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Voronoi Diagrams — A Survey of a Fundamental Geometric
Data Structure
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This paper presents a survey of the Voronoi diagram, one of the most fundamental data

structures in computational geometry. It demonstrates the importance and usefulness

of the Voronoi diagram in a wide variety of fields inside and outside computer science

and surveys the history of its development. The paper puts particular emphasis on the

unified exposition of its mathematical and algorithmic properties. Finally, the paper

provides the first comprehensive bibliography on Voronoi diagrams and related

structures.
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INTRODUCTION

Computational geometry is concerned
with the design and analysis of algo-
rithms for geometrical problems. In add-
ition, other more practically oriented,
areas of computer science— such as com-
puter graphics, computer-aided design,
robotics, pattern recognition, and opera-
tions research—give rise to problems that
inherently are geometrical. This is one
reason computational geometry has at-
tracted enormous research interest in the
past decade and is a well-established area
today. (For standard sources, we refer to
the survey article by Lee and Preparata

[19841 and to the textbooks by Preparata
and Shames [1985] and Edelsbrunner
[1987bl.)

Readers familiar with the literature of
computational geometry will have no-
ticed, especially in the last few years, an
increasing interest in a geometrical con-
struct called the Voronoi diagram. This
trend can also be observed in combinato-
rial geometry and in a considerable num-
ber of articles in natural science journals
that address the Voronoi diagram under
different names specific to the respective
area. Given some number of points in the
plane, their Voronoi diagram divides the
plane according to the nearest-neighbor
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rule: Each point is associated with
the region o~ the plane closest to it;
(Figure 1).

Why do Voronoi diagrams receive so
much attention? What is special about
this easily defined and visualized con-
struct? It seems three main reasons are
responsible. First, Voronoi diagrams
arise in nature in various situations. In-
deed, several natural processes can be
used to define particular classes of
Voronoi diagrams. Human intuition is
often guided by visual perception. If one
sees an underlying structure, the whole
situation may be understood at a higher
level. Second, Voronoi diagrams have in-
teresting and surprising mathematical
properties; for instance, they are related
to many well-known geometrical struc-
tures. Thifi has led several authors to

believe that the Voronoi diagram is one
of the most fundamental constructs de-
fined by a discrete set of points. Finally,
Voronoi diagrams have proved to be a
powerful tool in solving seemingly un-
related computational problems and
therefore have increasingly attracted
the attention of computer scientists
in the last few years. Efficient and
reasonably simple techniques have been

developed for the computer construction
and representation of Voronoi diagrams.

The intention of this survey is three-
fold: First, motivated by the fact that
Voronoi diagrams have been (reinvented
and studied fairly independently in the
applied natural sciences, in mathemat -
its, and in computer science, it presents
sketches of their historical development
in these three areas. Second, it surveys
the literature on Voronoi diagrams and
related structures, with particular em-
phasis on the unified exposition of their
mathematical and computational proper-
ties and their applications in computer
science. Finally, it provides the first
comprehensive bibliography on Voronoi
diagrams.

Basic Properties of the Voronoi Diagram

We begin with a description of elemen-
tary, though important, properties of the
Voronoi diagram that will suggest some
feeling for this structure. We also intro-
duce notation used throughout this pa-
per. See also Preparata and Shames
[1985] or Edelsbrunner [1987] for sources
on this material.

We first give a usual generic definition
of the Voronoi diagram. Let S denote a
set of n points (called sites) in the plane.
For two distinct sites p, q e S, the domi-
nance of p over q is defined as the sub-
set of the plane being at least as close to
p as to q. Formally,

dom(p, q) = {x~l?zl~(x,p) <b(x, q)},

for 6 denoting the euclidean distance
function. Clearly, dom( p, q) is a closed
half plane bounded by the perpendicuhm
bisector of’ p and q. This bisector sepa-
rates all points of the plane closer to p
from those closer to q and will be termed
the separator of p and q. The region of a
site p e S is the portion of the plane ly-
ing in all of the dominances of p over the
remaining sites in S. Formally

reg(p) = ,e~~{P1 dom(p, q).
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Figure 1. Voronoi diagram for eight sites in the

plane.

Since the regions are coming from in-
tersecting n – 1 half planes, they are
convex polygons. Thus the boundary of a
region consists of at most n – 1 edges
(maximal open straight-line segments)
and vertices (their endpoints). Each point
on an edge is equidistant from exactly
two sites, and each vertex is equidistant
from at least three. As a consequence,
the regions are edge to edge and vertex
to vertex, that is to say, they form a
polygonal partition of the plane. This
partition is called the Voronoi diagram,
V(S), of the finite point-set S (Figure 1).

Note that a region, say reg( p), cannot
be empty since it contains all points of
the plane at least as close to p as to any

other sites in S. In particular, p e reg( p).
It follows that V(S) contains exactly n
regions. Some of them are necessarily
unbounded. They are defined by sites ly.
ing on the boundary of the convex hull of
S because just for those sites there exist
points arbitrarily far away but still clos-
est.1 No vertices occur if and only if all
sites in S lie on a single straight line.
Such degenerate configurations also im-
ply the existence of regions with only one
(unbounded) edge. Otherwise, three or
more edges meet at a common vertex. It

lThe conuex hull of S is the smallest convex polY-
gon that contains S.

should be observed that each vertex is
the center of a circle that passes through
at least three sites but encloses no site.

Although n sites give rise to
();=

0( n2) separators, only linearly many
separators contribute an edge to V(S).
This can be seen by viewing a Voronoi
diagram as a planar graph with n re-
gions and minimum vertex degree 3.
Each of the e edges has two vertices, and
each of the u vertices belongs to at least
three edges. Hence, 2 e >3 U. Euler’s re-
lation n + v – e ? 2 now implies e < 3n

– 6 and u s 2 n – 4, Thus, for example,
the average number of edges of a region
does not achieve six; there are less than
3 n edges, and each of them belongs to
exactly two of the n regions.

The linear behavior of the size of the
Voronoi diagram in the plane means that,
roughly speaking, this structure is not
much more complex than the underlying
configuration of sites. This is one of the
main reasons for the frequent use of
Voronoi diagrams. A second reason is
that V(S) comprises the entire proximity
information about S in an explicit and
computationally useful manner. For ex-
ample, its applicability to the important
post-office problem (see below) is based
on the trivial observation that a point x
falls into the region of a site p if and
only if p is closest to x among all sites in
S. Moreover, if site p is closest to site q,
then reg( p) and reg( q) share a common
edge. This particularly implies that the
closest pair of sites in S gives rise to
some edge of V(S).

Applications in Computer Science

To substantiate the usefulness of the
Voronoi diagram in computer science, we
briefly describe four situations where this
structure is used. The practicality y and
diversity of these applications will
impart the appeal of Voronoi diagrams.

Associative File Searching

Consider some file of n two-attribute
records referring, for example, to latitude
and longitude of a city or to age and
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income of a person. Suppose we are given
an additional target record R and we
quickly want to retrieve that record of
the file that matches R the best. If re-
trieval occurs frequently on the same file,
a supporting data structure is called for.
This associative file searching problem
was first posed by Knuth [1973] as a
two-dimensional generalization of the
usual (one-attribute) file-searching prob-
lem. It possibly is best known in its geo-
metric version under the name post-office
problem: Given a set S of n sites in the
plane (post offices), report a site closest
to a given query point q (the location of a
person). Note that there exists a trivial
0( n)-time solution by computing all n
distances. There are various algorithms
in computational geometry that need
the post office problem as a subroutine
[Preparata and Shames 1985].

Shames [1975a] first observed the
relevance of Voronoi diagrams to this
problem. A site p is closest to q if and
only if q falls into the region of p. In a
preprocessing step the Voronoi diagram
of S is computed. To report a site closest
to q, it now suffices to determine the
region that contains q. For this so-called
point-location problem, efficient solutions
have been developed by Kirkpatrick
[19831, Edahiro et al. [1984], and Edels-
brunner et al. [1986]. In particular, point
location in a Voronoi diagram with n
regions is supported in O(log n) time and
0(n) storage overhead. This shows that
the post-office problem can be solved by
means of Voronoi diagrams in logarith-
mic query time and without increasing
the order of space, which is well known
to be optimal already for usual file
searching.

Cluster Analysis

The problem of automatically clustering
data arises frequently [Hartigan 19751.
Finding clusters means determining a
partition of the given set of data into
subsets whose in-class members are simi-
lar and whose cross-class members are
dissimilar according to a predefined simi-
larity measure. In the case of two-

Fig ure 2. Voronoi diagram for two dense clusters.

attribute data, similarity is reflected by
the proximity of sites in the plane. Prox-
imity, in turn, is revealed by properties
of the Voronoi diagram for these sites.
For instance, dense subsets of sites give
rise to Voronoi regions of small area;
regions of sites in a homogeneous cluster
will have similar geometric shape; for
clusters having orientation-sensitive
density, the shapes of the regions will
exhibit a corresponding direction sensi-
tivity. Figure 2 gives an example. Ahuja
[19821 showed how to use these proper-
ties for clustering and matching sites.

Voronoi diagrams support various
clustering techniques used in practice.
What is required at any stage of
the clustering process is often little
more than the retrieval of the nearest-
neighbor sites of specified sites. They
can be reported easily by examining the
edges of the regions of the specified sites.
This applies to several hierarchical
methods [Murtagh 1983], partitional
methods [Asano et al. 1988], and meth-
ods involving cluster selection [Aggarwal
et al. 1989].

Scheduling Record Accesses

Consider a mass storage system repre-
sented by a two-dimensional array of grid
points, each capable of storing one record.
The time for the read/write head to move
from point (x, y) to the point (u, U) is
proportional to I x – u I + I y – u 1, the
distance between these points measured
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Figure 3. Voronoi diagram and minimum span-
ning trees in the LI-metric,

in the L1-metric (i. e., Manhattan dis-
tance). One problem that arises in ac-
cessing batched requests is the following:
How is the head movement to be sched-
uled in order to retrieve the requested
records in minimum time (distance)?

Finding an exact solution was shown
to be NP-complete by Lee and Wong
[19801. A satisfactory approximate solu-
tion can be obtained quickly by means of
Voronoi diagrams. In an initial step, the
Voronoi diagram induced under the Ll-
metric is computed in 0( n log n) time by
taking the n requested grid points as
sites. Now the minimum-Ll-length tree
spanned by the sites can be constructed
quickly: An edge of the tree can only
connect sites whose regions are neigh-
bored in the Voronoi diagram [Hwang
1979; Lee and Wong 1980]. Figure 3 il-
lustrates this diagram (solid) and the
corresponding spanning tree (dashed). To
obtain a head movement whose length is
within a factor of 2 of the optimum, each
tree edge is traversed twice to access all
the sites.

Collision Detection

An important topic in controlling the mo-
tion of robot systems is that of collision
detection. For a robot moving in an ob-
stacle environment, one needs to deter-
mine collisions between moving robot
subparts and stationary obstacles or be-
tween two separately moving subparts of
the robot. In particular, proximity detec-
tion is important in order to be able to

.-
. . . . ..jgcJytj?JrJ”

Figure 4. Power diagram for seven circles

stop the system before a collision will
have occurred.

The robot system and the environment
of obstacles are usually modeled by
polygonal objects. For the sake of prox-
imity detection, collision-critical points
on the boundary of these objects may be
circumscribed by circles whose radii cor-
respond to the tolerance threshold of the
system. This reduces the problem to de-
tecting the intersection of circles. Colors
may be assigned to the circles in order to
distinguish between “harmless” inter-
sections (among circles stemming from
the same moving robot part or the same
obstacle) and others. Sharir [1985]
pointed out that there will be no inter-
section between circles of different colors
if all the connected components formed
by the circles are uncolored. Finding
connected components and checking col-
ors seem to involve an inspection of each
pair of circles. The problem becomes easy,
however, if the power diagram (the
Voronoi diagram where the power lines
of the circles are taken as separators) is
available; see Aurenhammer [1988a]
where this problem is solved in
O(n log n) time for n colored circles. The
crucial property that can be exploited
is that the points of intersection of two
circles lie on their common power line
(Figure 4).
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1. HISTORICAL PERSPECTIVE

The history of’ Voronoi diagrams can be
traced back to the middle of the nine-
teenth century. Although the spectrum
of scientific disciplines that include in-
terest in Voronoi diagrams is broad, three
aspects have been emphasized:

(1) Their use in modeling natural phe-
nomena

(2) The investigation of their mathemat -
ical, in particular, geometrical, com-
binatorial, and stochastic properties

(3) Their computer construction and
representation

Accordingly, Voronoi diagrams are
useful in three respects: As a structure
per se that makes explicit natural pro-
cesses, as an auxiliary structure for in-
vestigating and calculating related
mathematical objects, and as a data
structure for algorithmic problems that
are inherently geometric. In all three
applications, efficient and practical algo-
rithms for computing Voronoi diagrams
are required. Since the first application
bears the initial seed for their investiga-
tion, let us consider the role that Voronoi
diagrams play in the natural sciences
first.

1.1 Natural Scientist’s Viewpoint

To visualize the appearance of a Voronoi
diagram in nature, one could think of the
three-dimensional space being subdi-
vided into a manifold of crystals: From
several sites fixed in space, crystals start
growing at the same rate in all directions
and without pushing apart but stopping
growth as they come into contact. The
crystal emerging from each site in this
process is the region of space closer to
that site than to all others. In other
words, the regions form a Voronoi
diagram in three-space.

1. 1.1 Don-rams of Action

Most of the early work on Voronoi dia-
grams was motivated by crystallography.

●

Figure 5. Cubic crystal structure.

The objective in this respect was the
study of regions arising from regularly
placed sites. Figure 5 illustrates some of
the regions defined by 15 cubically or-
dered sites. In his comprehensive article
on crystal structures, Niggli [1927] calls
them Wirkungsbereiche (domains of ac-
tion), a term widely used nowadays and
used, with many synonyms, even in the
1930s as demonstrated in the clarifying
note by Nowacki [1933]. Much effort has
been devoted to the fundamental crystal-
lographical question: Which types of do-
mains of action are capable of filling the
plane or three space completely if only
congruent copies (and certain motions)
are to be used? Significant work was
done, among others, by Niggli [1927],
Delaunay (Delone) [1932], Nowacki
[19761, and by Koch [19751. In fact, the
question is a deep mathematical one, and
we will come back to it in the discussion
of mathematical aspects of Voronoi
diagrams.

1. 1.2 Wigner-Seitz Zones

A physiochemical system consists of a
number of distinct sites, typically
molecules, ions, or atoms. Equilibrium
and other properties of the system de-
pend on the spatial distribution of the
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sites, which can be conveniently repre-
sented by dividing the space between
them according to the nearest-neighbor
rule. The resulting Voronoi regions are

often called Wigner-Seitz zones after
Wigner and Seitz [1933], who were the

first to use them in metallurgy. Frank
and Kasper [1958] use these zones in the

investigation of complex alloy structures;
Loeb [1970] bases his survey of cubic
crystal structures on an intimately re -

lated concept, Allotting zones to sites is

of interest to molecular physicists, bio-
chemists, material scientists, and physi-
cal chemists. Via this approach Brostow
and Sycotte [1975] estimate the coordina-
tion number of liquid argon, David and
David [1982] study certain solvation
structures, Brumberger and Goodisman
[19831 interpret the small-angle scatter-
ing of catalysts, and Augenbaum and
Peskin [1985] treat large-scale hydro-
dynamic codes—just to name a few.

1.1.3 Johnson-Mehl and Apollonius Model

The nearest-neighbor rule (or equiva-
lently, the crystal growth model men-
tioned earlier) forces the Voronoi regions
to be convex polyhedra. Allowing the
crystals to start their growth at different
times gives rise to hyperbolically shaped
regions. The resulting Johnson-Mehl
model was proposed by Johnson and Mehl
[1939] as a more realistic model of struc-

ture for minerals. Figure 6 gives an il-
lustration; crystals are augmented with

their date of birth.

crystals growing simultaneously but

at different rates give rise to spherically

shaped regions forming the Apollonius
model. This structure can also be ob-

served as cell structures of plants or in

foams made out of soap bubbles [Matzke

and Nestler 1946; Smith 1954; Williams

1968]. It further appears as covering ar-

eas of plants and as areas of best-

received transmitters [Sakamoto and

Takagi 1988]. Weaire and Rivier [1984]

give a comprehensive survey and various

statistical data. Interestingly, the equi-

librium state of a spider web constitutes

a generalized, although still polygonal,

Voronoi Diagrams ● 351

Voronoi diagram. This follows from in-

vestigations by Maxwell [1864]. Figure 7

shows sites for a spider web such that the

distance between neighborhood sites cor-

responds to the tension of the edge they

define.

1. 1.4 Thiessen Polygons

Geographical interest in Voronoi dia-

grams originates with the climatologist

Thiessen [1911], who assigned proximity

polygons to observation sites in order to

improve the estimation of precipitation

averages over large areas. His method

was worked out in detail by Horton [19171
who proposed the name Thiessen poly-
gons, crediting Thiessen with the idea.
As reported in Boots [1979], Thiessen

polygons play four roles in geographical

research: As models for spatial processes,

as nonparametric techniques in point-

pattern analysis, as organizing struc-

tures for displaying spatial data, and for

calculating individual probabilities in

point patterns. In particular, we mention

Tuominen [1949] and Snyder [1962] (ap-

plications to urban planning), Gambini

[19661 and Boots [1979] (market areas;

generalized Thiessen polygons are used

there, in particular, the Johnson-Mehl

and Apollonius models), l~ollison [1977]

(ecological contact models), McLain

[19761 (spatial interpolation), Arnold and
Milne [1984] (cartography), and Okabe et

al. [1988] (facility location). For surveys
of Thiessen polygons from a geographical
and economic point of view, see Boots

[1986], Eiselt and Pederzoli [1986], and

Sibson [1979].

Suzuki and Iri [1986] report on the

importance of recovering the sites from a

given subdivision of a geographical area.

This inverse process of constructing

Thiessen polygons arises in the optimal

outline of school districts or of voting

precincts. In geographical variation

analysis, connectivity graphs for sites are

a valuable tool [Matula and Sokal 1980].

Among them are the minimum spanning

tree or Prim shortest connection network

(Figure 8), the ~elaunay triangulation,

and the Gabriel graph. These three
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are intimately related to contours obtained in this way with per-

polygons as will be discussed ceptual boundaries studied by Gestalt
psychologists. As pointed out by Blum

1. 1.5 Blum’s (Medial Axis) Transform

Yet another name for the Voronoi dia-

gram is popular in the natural sciences:

Blum’s transform of a set of sites. Con-

cerned with biological shape and visual

science, Blum [1967] used it for modeling

new descriptors of shape. In general, the

main problem in pattern recognition is to

extract characterizing elements from a

given (site) pattern. When no geometri-

cal model of the pattern is available, its

structural description may be based on

the notion of neighborhood of a site and

thus, in particular, on Blum’s transform.

Fairfield [1979] successfully compared

t1973], curvature properties of a given

contour correspond to topological proper-

ties of its transform (compare Figure 9).

The smooth pieces of the contour (solid)

should be viewed as sites of generalized

shape. By definition, each point of the

transform (dashed) is equidistant from at

least two sites. In this context, the trans-

form often is called the medial axis or

skeleton of the contour. The medial axis

of digitized contours was exploited in

image processing by Philbrick [19681,

Montanari [1968], and Lantuejoul and

Maisonneuve [1984].

Although the foregoing list of applica-

tions of Voronoi diagrams in the natural
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Figure 8. Minimum spanning tree for the nine

state capitals of Austria.

sciences is not complete, we refrain from
further details and turn now to their role
in the mathematical environment.

1.2 Mathematician’s Viewpoint

The very earliest motivation for the study
of Voronoi diagrams stems from the the-
ory of quadratic forms. Gauss [18401
observed that quadratic forms have an
interpretation in terms of Voronoi
diagrams for sites that are parallelohe-
drally ordered in space. His idea was

Spider web

353

e

1’

Figure 9. Contour and its medial axis [Philbrick

19681.

exploited by Dirichlet [18501 to establish,
among other results, a simple proof of
the unique reducibility of quadratic
forms. A careful generalization to higher
dimensions was provided by Voronoi
[1908]. To honor the pioneering work of
these mathematicians, the construct has
been referred to as the Dirichlet tessell-
ation or the Voronoi diagram, and indeed

ACM Computing Surveys, Vol. 23, No. 3, September 1991



www.manaraa.com

354 “ Franz Aurenhammer

these terms are the most popular ones in
the vast body of literature.

The following review provides basic
mathematical properties of Voronoi dia-
grams and their generalizations (many of
them will also be crucial in the under-
standing of their algorithmic properties
and applications), as well as points out
certain features of Voronoi diaqams that
have potential applications but may be
not familiar to computational geometry
researchers.

1.2.1 Regularly Placed Sites

Mathematical interest in Voronoi dia-
grams can be divided according to
whether regularly or irregularly placed
sites are involved. A main area where
Voronoi diagrams for regularly placed
sites have been used for a long time is
geometrical crystallography.

Let R d denote the d-dimensional
Cartesian s ace. A tiling of Rd is a cov-

Yering of R by closed sets whose interi-
ors are pairwise disjoint. Tilings of R d
by convex polyhedra with the property
that the group of motions mapping the
tiling onto itself is a crystallographic
group [Bieberbach 1912] are of particular
interest. Their polyhedra are necessarily
congruent and were called stereohedra
by Federoff [1885] and fundamental
domains by Schonflies [1891]. One of
the central questions of geometrical crys-
tallography has been to enumerate
all stereohedra and to classify them
according to their crystallographic
groups.

Most progress was made for the sub-
class of plesiohedra. They can be inter-
preted as Voronoi regions and were called
special fundamental domains by
Schonflies [1891] and domains of action
by Niggli [1927]. Laves [1930] and
Delaunay et al. [1978] enumerated all
plesiohedra in R2. Applying a refined
classification scheme, Delaunay [1932]
distinguished among 24 types of plesio-
hedra in R3. A complete list of
planar stereohedra was given by
Grunbaum and Shephard [1987].

Delaunay [1932] showed that the num-
ber of facets (faces of dimension d – 1) of

Figure 10. Plesiohedron with 18 facets [Griinbaum
and Shephard 1980].

a stereohedron in R d is finite; for in-
stance, 390 is an upper bound for d = 3.
So, by Tarski’s [19511 decidability theo-
rem, all spatial stereohedra can be “ef-
fectively” determined. In spite of this
fact, their enumeration is still incom-
plete. Also, an enumeration method for
plesiohedra mentioned in Delaunay
[19631 does not yield a practical algo-
rithm. Among others, Nowacki [1976],
Koch [1973], and Engel [1981] discovered
spatial plesiohedra with 18, 23, and 38
facets, respectively. Figure 10 depicts a
plesiohedron with many facets. It seems
surprising that its congruent copies are
capable of filling three-space completely.

The methods used to obtain plesio-
hedra with large numbers of facets are
probably as interesting as the numbers
themselves. After carefully choosing a
set of regularly placed sites (dependent of
several variable parameters), certain
parts of its Voronoi diagram are con-
structed via computer [Engel 1981]. For
excellent sources on tilings, refer to
Grunbaum and Shephard [1980, 1987],

It is worthwhile to mention that
Voronoi diagrams for regularly placed
sites also find other applications in
mathematics. They apply to numerical
integration [Babenko 1977], to packing
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and covering problems for congruent
spheres [Rogers 1964], and to statistical
investigations of lattice systems [Besag
1974; Mollison 1977; Conway and Sloane
1982].

1.2.2 Irregularly Placed Sites

Let us now turn our attention to Voronoi
diagrams arising from sets of irregularly
placed sites. A tiling of R d by polyhedra
is called a cell complex in R d if the tiling
is facet to facet, that is, each facet of a
polyhedron is also a facet of some other
polyhedron in that tiling.2 Every tiling
of Rd by plesiohedra is a cell complex.
The Voronoi diagram for irregularly
placed sites is still a cell complex
although its regions are no longer
congruent polyhedra.

This fact gives rise to various ques-
tions. Motivated by the problem of find-
ing densest sphere packings, Rogers
[19641 posed the following extremal prob-
lem: How big is the smallest possible
Voronoi region with t facets and defined
by sites with minimum distance two? Es-
timates of this and related quantities
were derived by Muder [1988a, 1988b] for
planar regions.

Much work on general Voronoi dia-
grams is concerned with their combinato-
rial properties and, in particular, with
their size, that is, their numbers of faces
of various dimensions as a function of the
number n of sites considered. The size of
a Voronoi diagram is an important quan-
tity since it relates the amount of space
needed to store this structure to the in-
put size. Answering Crum’s problem,
Dewdney and Vranch [1977] exhibit an
arbitrarily large set of Voronoi polyhedra
in R 3 each pair of which shares a facet.
The example they give shows that the
size of a Voronoi diagram in R3 is 0( n2);

this was also observed by Preparata
[1977]. As already mentioned, a Voronoi
diagram in the plane has size 0(n) since
its edges and vertices form a planar

2 In fact, a tiling if facet to facet if and only if it is
face to face for faces of any dimensions less than d

[Gruber and Ryskov 19871.
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Figure 11. Voronoi diagrams are related to convex
hulls

graph. The size of higher dimensional
diagrams has only recently been ana-
lyzed completely. Klee [1980] and Brown
[19801 showed that Voronoi diagrams in
R d are equivalent to certain convex
polyhedral surfaces in R ‘f 1 in a strong
sense. Hence, known results on the size
of polyhedra carry over, in particular,
the so-called upper and lower bound the-
orems [Brondsted 19831. Exploiting this
relationship, exact bounds on the num-
bers of individual faces of d-dimensional
Voronoi diagrams were derived by Seidel
[1982] and by Paschinger [1982]. Fig-
ure 11 illustrates Brown’s original trans-
form that relates the Voronoi diagram
in R2 to a convex hull in R3 via
stereographical projection.

1.2.3 Generalized Voronoi Diagrams

Interestingly, not every convex polyhe-
dral surface in R‘+ 1 is related to a
Voronoi diagam in R ~. For a more gen-
eral class, a one-to-one correspondence
can be established. Paschinger [1982] and
Aurenhammer [1987a] showed that
power o!iagrams are equivalent to the
boundary projection of convex polyhedral
surfaces. 3 This generalization assigns a
particular weight w to each of the given
sites p and replaces the euclidean dis-
tance 6(x, p) between a point x and p by

3 Such projections are commonly called Schlegel
diagrams in discrete geometry [Griinbaum 19671,
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Figure 12. Apollomus model [Aurenhammer and Edelsbrunner 1984].

62( x, p) – w. Intuitively speaking, w ex-
presses the capability of p to influence

its neighborhood. In particular, the pair

(p, w) may be interpreted as a sphere
with center p and radius ~ if w > 0.
As an important property, the separator
defined by two weighted sites in R2 is

still a straight line: the power line of two
circles. Figure 4 shows a power
diagram in the plane. Power diagrams
already appeared in Dirichlet [18501—
therefore, often being called generalized

Dirich let cell complexes— and continued
to be objects of interest, especially in
sphere packing [Rogers 1964], illumin-
ating spheres [Linhart 19811, and
the geometry of numbers [Gruber and
Lekkerkerker 1988].

The concept of weighting the sites gives
rise to several other useful types of dia-
grams. Weighting the euclidean distance
by a multiplicative constant yields the
Apollonius model, investigated by
Aurenhammer and Edelsbrunner [1984].
The separator of two sites in the plane
describes their Apollonius circle. From
Figure 12 it can be seen that regions
may be disconnected and may partition
the plane into G( n2) connected compo-
nents. Additiue weights give rise to the
Johnson-Mehl model (compare Figure 6).
For many additional types, see Ash and
Bolker [1986].

At this point, let us modify the concept
of Voronoi diagram in another way. The
order-h Voronoi diagram of n sites is a
partition of R d into regions such that
any point within a fixed region has the
same k closest sites. Its regions are con-
vex polyhedra that form a cell complex
in R‘. For k = 1, the classical Voronoi
diagram is obtained. In the case of k =

Figure 13. Planar order-2 Voronoi diagram

[Shames19781.

n – 1, the structure is often referred to
as the furthest site Voronoi diagram since
now the region of a site contains all points
in space furthest from it. Figure 13 shows
an order-2 Voronoi diagram for 8 sites in
the plane. Note that only 15 of the 28
pairs of sites define a region and that a
separator may yield more than one edge.
(An example of a furthest site Voronoi
diagram is given in Figure 24.)

Early treatments of order-k diagrams
are found in Miles [1970] and in Shames
and Hoey [1975]. Lee [1982al succeeded
in proving exact upper bounds on the
maximum numbers of regions, edges, and
vertices of a planar order-k Voronoi
diagram. Asymptotically these num-
bers are @(k( n – k)). The fascinating
relationship between Voronoi dia-
grams, weighted diagrams, order-k dia-
grams, and other geometric objects was
worked out by Edelsbrunner et al.
[19861, Aurenhammer [1987 al, and
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Aurenhammer and Imai [1988]. Within
this context, the concepts of power dia-
gram and hyperplane arrangement play
a central role. Section 3.1 is devoted to a
detailed description of this material. In
particular, various results on the size and
on the computational complexity of con-
structing such diagrams are obtained.
However, still little is known on the size
of the order-k Voronoi diagram in higher
dimensions; consult [Edelsbrunner and
Seidel 1986]. Only for the furthest-site
diagram exact upper bounds are avail-
able [Seidel 1987]. The number of re-
gions of an order-k Voronoi (or power)
diagram is closely related to the num-
ber of k-sets of a finite point set. Deter-
mining these numbers belongs to the
main open problems in combinatorial
geometry.

Once the usefulness of known types of
Voronoi diagrams had been realized, fur-
ther generalizations were attempted.
Motivation mostly came from applica-
tions in computational geometry. In or-
der to meet practical needs, general
distance functions like the LP-metrics
[Lee 1980a] or convex metrics [Chew
and Drysdale 1985] were taken to define
a Voronoi diagram. Also, the shape of
sites was varied while using a canonical
extension of the euclidean distance func-
tion. Line segments [Kirkpatrick 1979],
curve segments [Yap 1987], and disks or
general convex sites [Leven and Sharir
1986, 1987] have been considered. If the
segments form a closed curve, their dia-
gram is just the medial axis of a contour
(compare Figure 9). Disks can be viewed
as centers weighted additively by their
radii, thus giving rise to the Johnson-
Mehl model. This list is not meant to be
exhaustive; we shall be concerned with
mathematical and computational proper-
ties of varous generalized Voronoi
diagrams in later sections.

Let us mention one more way of gener-
alization: changing the underlying space.
Ehrlich and Im Hof [1979] investigated
the behavior of Voronoi regions in
Riemann manifolds. Brown [1980],
Paschinger [1982], and Yap [1987] ob-
served that Voronoi diagrams on the

sphere and on the torus, respectively, are
closely related to their equivalents in the
euclidean space of the same dimension.
Diagrams on three-dimensional poly-
hedral surfaces and on the three-
dimensional cone have been treated by
Mount [1985] and by Dehne and Klein
[19871, respectively.

1.2.4 Delaunay Triangulations

Hand in hand with the investigation of
Voronoi diagrams goes the investigation
of related constructs. Among them, the
Delaunay triangulation is most promi-
nent. It contains a (straight-line) edge
connecting two sites in the plane if and
only if their Voronoi regions share a
common edge. The structure was intro-
duced by Voronoi [1908] for sites that
form a lattice and was extended by
Delaunay [1934] to irregularly placed
sites by means of the empty-circle me-
thod: Consider all triangles formed by
the sites such that the circumcircle of
each triangle is empty of other sites.
The set of edges of these triangles
gives the Delaunay triangulation of
the sites.

The planar Voronoi diagram and the
Delaunay triangulation are duals in a
graphtheoretical sense, Voronoi vertices
correspond to Delaunay triangles,
Voronoi regions correspond to sites, and
edges of both types correspond by defini-
tion. From Figure 14 it can be seen that
Delaunay edges (solid) are orthogonal to
their corresponding Voronoi edges
(dashed)–but do not necessarily inter-
sect them— and that the boundary of
the convex hull of the sites consists of
Delaunay edges. The duality immedi-
ately implies upper bounds of 3 n – 6 and
of 2 n – 4 on the number of Delaunay
edges and triangles, respectively (com-
pare Introduction). The Delaunay tri-
angulation and its duality to Voronoi
diagrams generalize to higher dimen-
sions in an obvious way. By results
by Dewdney and Vranch [1977], the
Delaunay triangulation in R3 may
already be the complete graph on

()

n
n sites, thus having

2
edges. For a
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Figure 14. Voronoi diagram and Delaunay trian-
gulation are duals,

catalog of properties of higher dimen-
sional Delaunay triangulations arising
from site lattices see Gruber and
Lekkerkerker [19881.

Several interesting properties are
known for the Delaunay triangulation
in the plane. It was first observed by
Sibson [1977] that this triangulation
is locally equiangular. This property
holds when, for any two triangles whose
union is a convex quadrilateral, the re-
placement of their common edge by the
alternative diagonal does not increase the
minimum of the six interior angles con-
cerned. Actually, the Delaunay triangu-
lation is the only one with this property
that particularly shows its uniqueness.
For sites being in general position (the
Delaunay triangulation may contain
more-sided faces if four sites are cocircu-
lar), Edelsbrunner [19871 showed that lo-
cal equiangularity is equivalent to global
equiangularity. The triangles define the
lexicographically largest list of sorted
angles. A similar result holds if only the
smallest angle of each triangle is consid-
ered [Lawson 1977]. Note that the Delau-
nay triangulation thus maximizes the
minimum angle over all triangulations
of a given set of sites. On the other hand,
a simple example shows that the maxi-
mum angle is not minimized. It is inter-
esting to note that, by the empty circle
property, any triangulation without
obtuse angles must be Delaunay. Tri-

angulations without “extreme” an-
gles are desirable in finite element
and interpolation methods.

Lawson [1972] gave a counterexample
to Shames and Hoey’s [1975] conjecture
that the Delaunay triangulation has
minimum total edge length. It does not
even approximate the shortest triangula-
tion [Manacher and Zobrist 1979], and in
fact it may be as long as any triangula-
tion [Kirkpatrick 1980]. It is, however,
close to optimal on the average [Lingas
1986a]. A different criterion of optimal-
ity is mentioned in McLain [1976]. For
each triangle, all its points should be at
least as close to one of its defining sites
as to any other site. This property is not
shared by the Delaunay triangulation, as
is claimed there.

As an important fact, the Delaunay
triangulation is a supergraph of several
well-known and widely used graphs
spanned by a set of sites in the plane.
Among them are the minimum spanning

tree (or Prim shortest connection net-
work ) introduced by Kruskal [1956] and
Prim [1957], the Gabriel graph intro-
duced by Gabriel and Sokal [1969], and
the relative neigh borhood graph intro-
duced by Toussaint [19801. Section 2.4
gives definitions of these graphs and
describes their interrelations.

The Delaunay triangulation can be ex-
ploited to find certain linear combina-

tions among its defining sites. Each site
not on the convex hull can be repre-
sented as a weighted mass center of the
sites adjacent in the triangulation; see
Sibson [1980] who mentions applications
to surface smoothing. Aurenhammer
[1988b] generalized this result to power
diagrams and their order-k modifica-
tions. In particular, Gale transforms of

the sites may be derived in this way
[Aurenhammer 1990bl. Gale transforms
are a versatile tool in the investigation of
high-dimensional convex polyhedra
[Grunbaum 19671.

The generalized Delaunay triangula-
tion obtained from power diagrams gains
in importance from the following recog-
nition problem: Given some cell complex,
can it be interpreted as a Voronoi dia-
gram? A cell complex in R d may be
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viewed as a power diagram if and only if
the cell complex admits a certain dual
construct, called the reciprocal figure by
Maxwell [1864], Crapo [1979], Whiteley
[1979], and Ash and Bolker [1986]. The
reciprocal figure is completely character-
ized by the properties of the Delaunay
triangulation for power diagrams. Using
reciprocal figures as a criterion,
Aurenhammer [1987b] showed that sev-
eral well-known types of cell com-
plexes are power diagrams. Moreover,
Voronoi diagrams can be recognized
and their defining sites can be re-
stored in an efficient way using recip-
rocal figures [Aurenhammer 1987c]. For
a nice survey on reciprocal figures,
see Ash et al. [1988]. Essentially distinct
criteria for cell complexes to be classical
or to be multiplicatively or additively
weighted, Voronoi diagrams were pro-
posed by Ash and Bolker [1985, 1986].
Blum [1967] first suggested that gener-
ally shaped sites could be reconstructed
from the shape of the regions they de-
fine. Calabi and Hartnett [1968] elabo-
rated on this question in some detail.
Recognition problems of this kind find
applications, aside from geography and
economics, in statics and in computer
science.

This list of geometric and combina-
torial properties of Delaunay triangu-
lations is not complete. We shall
see various others while discussing
applications in computational geometry.

1.2.5 Stochastic Properties

So far, we have surveyed a good deal of
research on geometric and combinatorial.
aspects of Voronoi diagrams. Another
significant stream of investigations con-
cerns the determination of statistical data
about the diagrams obtained from ran-
dom distributions of sites. One of the
earliest and strongest motivations for
studying stochastic properties of Voronoi
diagrams stems from their practical rele-
vance to physical and chemical processes,
especially in metallurgy and crystallog-
raphy [Johnson and Mehl 19391. Accord-
ingly, most efforts concentrated on sites
distributed in R2 and in R3. In his valu-
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able paper, Meijering [1953] derived
means for the volume, the total boundary
area, and the total edge length of the
regions of a Voronoi diagram in R 3 aris-
ing from a Poisson field of sites, as well
as the average number of vertices, edges,
and facets. Several of these quantities
are also given for the Johnson-Mehl
model. Further progress was made by
Gilbert [19611 who determined the vari-
ances for the volumes of such Voronoi
regions. He also found some variances
associated with plane or line section
through regions. Based on experimental
results, Kiang [19661 gave a formula for
the random size distribution of Voronoi
regions in R 1, along with a conjecture for
its generalization to R2 and R3. The
conjecture is, however, incorrect accord-
ing to results in Gilbert [1961]. Figure 15
shows his obtained density functions in
R1 (solid), in R2 (dashed), and in R3
(dotted). Observed volume over mean
volume is scaled.

Miles [1970] made a thorough study of
Voronoi diagrams induced by a planar
homogeneous site process. Expectations of
the edge number, edge length, perimeter,
and area of the regions are given.
Further results concern the Delaunay
triangulation and the order-k family of
diagrams. Relevant experimental data
can be found in Crain [19781. His ob-
served frequencies of edges per polygon
are of particular interest since no theo-
retical results are presently available.
An important result by Dwyer [1989]
shows that the expected number of ver-
tices of the classical (closest or furthest
site) Voronoi diagram in d dimensions is
only 0(n) if the n sites are uniformly
drawn in a hyperball. At this place, we
mention only marginally that several re -
suits have been obtained that concern
the behavior of Voronoi diagrams for sites
being introduced in random order rather
than being drawn by some probability
distribution. We shall see such results in
Section 1.3.

Space constraints preclude mentioning
all related work. To name a few authors,
we refer to Newman et al. [19831 (num-
ber of nearest neighbors in d di-
mensions), Weaire and Rivier [19841
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Figure 15. Empirical density function of the volume of regions [Kiang 19661.

(generalized diagrams), Besag [19741,
Mollison [19771, Cruz Orive [19791,
Conway and Sloane [1982] (site
lattices; applications to spread of
epidemics and to coding theory are
given), and Aurenhammer et al.
[19911 (probabilistic distance functions).
The reader interested in geometrical
probability in general and stochastic
properties of cell complexes in particular
may consult the expository papers by
Moran [1966, 19691, Little [19741, and
Baddeley [1977].

1.3 Computer Scientist’s Viewpoint

We have documented the remarkable role
that Voronoi dia~ams play in the math-
ematical and applied natural sciences.
Yet for a long time their practical useful-
ness suffered from the absence of reason-
ably simple and efficient methods for
their computation. This section reviews
methods for the computer construction
and representation of Voronoi diagrams.
Algorithmic applications of Voronoi
dia~ams and of related structures are
discussed in Section 2.

1.3.1Early Algorithms

Since Voronoi diagrams have been used
for decades by natural scientists, many

intuitive construction rules were pro-
posed. The earliest diagrams were drawn
with pencil and ruler; see Horton [1917]
or Kopec [19631 who mentions problems
of ambiguity if many sites lie on a com-
mon circle. Probably the most obvious
approach is to delineate the diagram in
the plane region by region, by singling
out those separators that contribute to
edges of the current region. A provi-
sional and admittedly inefficient version
of such an algorithm was described by
Rhynsburger [19731. Other early algo-
rithms build up the diagram vertex by
vertex [Brassel and Reif 1979] or by in-
cremental insertion of sites (i. e., of their
regions) [Green and Sibson 19771.

Figure 16 illustrates the insertion of a
site p that involves two tasks. First, we
need to find the current region in which
p falls. Let q be the site defining this
region; the separator of p and q then
will contribute an edge, e, to p’s region.
Second, the boundary of p’s region (bold)
is created edge by edge, starting with e.
During this process, the parts of the old
diagram closest to p (dashed) are
traversed and deleted. These parts are
specified by lying on p’s side of
the separators of p and its new neigh-
bors. If appropriately implemented, the
second task requires time proportional to
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Figure 16. Inserting a Voronoi region.

the number of edges deleted. This num-
ber is 0(i) in the worst case (i denotes
the number of sites inserted so far) since
we have to delete a planar graph with at
most i regions. The first task requires
0(i) time in the worst case, but a simple
heuristic will achieve 0(V) expected
time. Experimental results showed that
this method is quite efficient and thus is
applicable to rather large sets of sites. As
for the other algorithms mentioned
above, however, the worst-case behavior
is 0( nz) for n given sites.

Several intuitive methods are also
available for the Voronoi diagram in R 3.
They compute the induced cell complex
facet by facet [Brostow et al. 1978], ver-
tex by vertex [Finney 1979], or via its
dual, the Delaunay triangulation
[Tanemura et al. 19831. Potentially, they
require 0( n4) time in the worst case,
although they may perform quite well for
various distributions of sites. For d >4
dimensions, insertion strategies working
directly [Bowyer 19811 or based on the
Delaunay triangulation [Watson 1981]
have been used to construct a suitable
combinatorial representation of the
Voronoi diagram. Their time complexity
is O(nl+ll~) and 0(n2– I[d), respectively,
provided the sites are “well distributed. ”
This should be contrasted, however,
against the maximal size of a Voronoi

diagram in R d that grows exponentially
with d. A three-dimensional implemen-
tation of Watson’s algorithm is discussed
in Field [1986]. Avis and Bhattacharya
[1983] propose an O(n rdlzl ‘1) time algo-
rithm for determining all vertices of the
d-dimensional diagram. They also out -
line a linear programming method for
calculating the d-dimensional Delaunay
triangulation but give no concrete
complexity analysis.

Only recently have optimal or near-
optimal algorithms for constructing
Voronoi diagrams been devised. The rea-
son is that only in the last few years
have powerful algorithmic techniques
been fully developed and exploited for
computational geometry purposes.

1.3.2 Speeding Up Insertion

The process of building a Voronoi dia-
gram in the plane by incremental inser-
tion of sites stands out by its simplicity.
Originally having an 0( n ~) expected
performance, the Green-Sibson algorithm
may be polished up to run faster for sev-
eral distributions of the sites. By intro-
ducing suitable orderings of the sites, the
expected time for finding the region the
next site falls in and for integrating the
new region can be lowered to O(1) [Ohya
et al. 1984a, 1984b].4 This gives an ex-
pected runtime of 0(n). Clearly this is
the best we can hope for because the size
of the diagram is a trivial lower bound
for the time needed to compute it.

An alternative approach to speeding
up insertion is randomization. Based on
a general result by Clarkson and Shor
[19881, Mehlhorn et al. [19901 showed that
inserting the sites in random order yields
an 0( n log n)-time performance with
high probability. This complexity is inde-
pendent of the distribution of the sites;
expectation is taken over all possible
permutations of the sites. The algorithm
extends to the class called abstract

4 Recall in this context that the average number of
edges of a region is less than six.
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Voronoi diagrams by Klein [1989] with-
out increase of runtime. This general
concept includes power diagrams and di-
agrams defined by line segments or by
LP-metrics. Guibas et al. [1990] propose
an even more practical version of ran-
domized incremental construction of the
classical Voronoi diagram.

As with other geometrical algorithms,
the problem of numerical errors arises in
the construction of Voronoi diagrams. For
example, sites nearly lying on a common
circle define vertices that tend to ap-
proach arbitrarily close. A proposal for
making the strategy of insertion robust
against numerical errors is outlined in
Sugihara and Iri [1988].

The process of inserting Voronoi re-
gions extends nicely to R3. Regions are
convex polyhedra that can be constructed
facet by facet by intersecting existing
regions with separators that are planes
in this case. A region cannot have more
than n – 1 facets (one for each different
site) and thus by Euler’s relation, has
0(n) edges and vertices. Therefore, one
needs 0( n + t) time per region if t facets,

edges, or vertices are deleted during

its insertion; see Aurenhammer and

Edelsbrunner [1984] who treat insertions

in a more general cell complex in R3.
Since each component deleted has to be
constructed first, an 0( n2 )-time algo-
rithm results. This is worst-case optimal
since a Voronoi diagram in R3 may have
a size of 61(n2).

1.3.3 Divide and Conquer

A widely used method to design fast al-
gorithms is divide and conquer. Shames
and Hoey [19751 observed that this
method applies well to problems in com-
putational geometry and, in particular,
to the construction of a Voronoi diagram
in the plane: The given set of n sites is
divided into two subsets by a vertical
line. The diagrams for these subsets are
computed recursively and are then
“merged” in the conquer step to form the
total diagram. Figure 17 shows the chain
of edges (bold) to be constructed during
the process of merging the diagram for
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Figure 17. Merging two Voronoi diagrams

[Shames 19781.

left sites (dashed) with the diagram for
right sites (dotted).

Section 3.2 is devoted to a detailed
description of the method and its gener-
alizations. In particular, two diagrams
can be merged in 0(n) time, which im-
plies an 0( n log n) time algorithm if the
divide step is carried out in a balanced
way. This is worst-case optimal since any
algorithm that constructs an explicit de-
scription of a Voronoi diagram may be
used to sort: Interpret an input sequence
of n real numbers as a set of sites on the
x-axis and construct their Voronoi dia-
gram. Regions of sites for consecutive
numbers will share an edge, so the sorted
sequence can be obtained in 0(n) time

by scanning through the regions.5

Although theoretically fast and ele-

gant, the divide-and-conquer approach

has certain disadvantages. Implementa-

tion details are somewhat complicated,

and numerical errors are likely by

5 Voronoi diagrams do not help for sorting general

sets of sites. Seidel [19851 proved that sorting n
sites in the plane with respect to their x-coordi -
nates takes Q( n log n) worst-case time even when
their Voronoi diagram is part of the input. It is

unclear whether sorting helps for Voronoi dia-

grams Fortune [1988], however, pointed out that
presorting the sites in two different directions low-
ers the additional time for constructing the

diagram in the L1-metric to 0( n log log n),
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construction: Dividing the plane into
narrow slabs forces the vertices defined
by sites within a slab to approach infin-
ity. Moreover, the expected behavior is
still 0( n log n). An 0( n)-expected-time
algorithm that applies divide and con-
quer to a certain subset of sites was
outlined by Bentley et al. [1980].

Divide and conquer is the basis of a
large class of algorithms for computing
generalized Voronoi diagrams in the
plane. Let us briefly list some of them in
order to give credit to the authors who
considered them first. Shames and Hoey
[19751 reported that their algorithm also
applies to the furthest site Voronoi dia-
gram in the plane. Hwang [1979], Lee
and Wong [1980], and Lee [1980] consid-
ered point sites under the LP-metrics,
whereas even more general distance
functions were treated by Widmeier et
al. [1987], Chew and Drysdale [1985], and
Klein and Wood [19881. Imai et al. [1985]
treated sites under the Laguerre dis-
tance; that is, their power diagram.
Concerning the divide-and-conquer con-
struction of Voronoi diagrams for sites
more general than points, we refer to
Kirkpatrick [1979] (line segments), Lee
and Drysdale [1981] (line segments or
nonintersecting discs), Sharir [1985]
(arbitrary disks), Leven and Sharir [19871
(planar convex bodies), Yap [1987] (curve
segments), and Lee [1982b] (medial axis
of a simple polygon). It should be noted
that most of the algorithms just men-
tioned are worst-case optimal.

1.3.4 Higher Dimensional Embedding

Transforming geometrical problems into
more easily understood and solved ones
plays an important role in computational
geometry (e.g., see [Edelsbrunner 19871).
Brown [1979] first perceived the possibil-
ity of transforming Voronoi diagrams in
R2 into convex hulls in R3: The sites are
mapped, via stereographical projection,
into points lying on a sphere (compare
Figure 11). This takes 0(n) time.
The convex hull of the resulting three-
dimensional point set is computed using
the algorithm by Preparata and Hong
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[19771 that requires O(n log n) time. The
convex hull is dual to the Voronoi dia-
gram of the given sites in a geometrical
sense. Hence 0(n) additional time suf-
fices for deriving the latter. This elegant
approach matches the optimal 0( n log n)
time bound, although it suffers from the
problem of processing three-dimensional
objects.G

An important feature of the embedding
method is its easy generalization to
higher dimensions. Methods for deter-
mining higher dimensional convex hulls
are well established [Seidel 1981, 19861,
hence efficient worst-case algorithms for
computing the d-dimensional Voronoi di-
agram become available. Their runtime,
however, increases exponentially with d
according to the maximal size of a dia-
gram. This should be contrasted with a
recent result by Dwyer [1989], showing
that 0(n) expected time suffices for com-
puting the Voronoi diagram in constant
dimensions d for uniformly distributed
sites.

Brown’s idea was further developed by
Edelsbrunner et al. [1986] for construct-
ing the order-k Voronoi diagram family
and by Aurenhammer [1987al for con-
structing the power diagram and its
order-k family in general dimensions.
See also Edelsbrurmer [19861, Aggarwal
et al. [1989a], and Aurenhammer [1990al
where order-k diagrams are obtained in
different ways from their higher dimen-
sional embeddings. We refrain from any
details here and refer to Section 3.1 for a
comprehensive discussion of this mate-
rial. For different approaches to the com-
putation of order-k diagrams in the plane
consult Lee [1982al and Chazelle and
Edelsbrunner [19871. Clarkson [19871
speeds up a combined version of these
approaches using random sampling,
achieving O(knl”) expected time and

6 In fact, since Preparata and Hong construct con-

vex hulls by divide and conquer, this is just a
three-dimensional translation of a divide-and-
conquer construction. By Brown’s result, simple
convex hull algorithms [Clarkson and Shor’s 1988]
lead to simple Voronoi diagram algorithms,
however.
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space (for any c > O) that is nearly
optimal.

Embedding in higher dimensions yields
algorithms for various different types
of diagrams. See Aurenhammer and
Edelsbrunner [1984] for the multipli-
catively weighted Voronoi diagram,
Aggarwal et al. [1989a] for the medial
axis of a convex polygon, Edelsbrunner
et al. [19891 for cluster Voronoi dia-
grams, and Aurenhammer and Stockl
[1988] for the peeper’s
diagram.

1.3.5 Plane-Sweep Construction

Another powerful technique in

Voronoi

computa-
tional ge~metry is the pjane-sweep ‘tech-
nique [Preparata and Shames 19851. In
contrast to the embedding method, this
technique decreases the dimension of the
problem. Intuitively speaking, the static
problem of computing a Voronoi diagram
in the plane is reduced to the dynamic
problem of maintaining the cross section
of the diagram with a straight line. The
algorithm simulates sweeping a line
across the plane from below. At any point
in time, the portion of the diagram below
the sweep line is complete (Figure 18).
Fortune [1985, 1987] first observed that
updates on the sweep line can be imple-
mented to cost O(log n) time if a certain
continuous deformation of the diagram is
treated. From this deformation, the orig-
inal diagram can be constructed in 0(n)
time. The method, its application, and its
modification for generalized Voronoi
diagrams are described in detail in
Section 3.3.

The plane-sweep approach to Voronoi

dia~ams combines simplicity and effi-

ciency. It achieves the optimal 0( n log n)

time and 0(n) space bounds for the clas-
sical type, the additively weighted type,
and the dia~am for line segments
[Fortune 1987]. The method has been

successfully applied by Seidel [1988]

to Voronoi diagrams with line segment

obstacles joining sites (and their con-

strained Delaunay triangulations). This

type had been previously attacked by

means of rather involved divide-and-

Figure 18. Maintaining the intersection with a
line.

conquer algorithms [Lee and Lin 1986;
Lingas 1986b; Chew 1989a; and Wang
and Schubert 19871. As was reported by
Rosenberger [19881, plane sweep also
performs well for planar order-k dia-
grams even when the sites are weighted
additively.

1.3.6 Delaunay Triangulation Algorithms

Since the Voronoi diam-am and the
Delaunay triangulation ‘are duals, the
combinatorial structure of either struc-
ture is com~letelv determined from its
dual. Conse~uentfy, the Delaunay trian-
gulation of n sites in the plane can be
obtained in O(n) time after an
0( n log n)-time precomputation of the
Voronoi diagram. Several practical ap-
plications, however, solely exploit combi-
natorial properties of the Delaunay
triangulation. This has led to the
investigation of methods for constructing
this structure directly, thus avoiding
the need to calculate and store the
coordinates of Voronoi vertices.

Lawson [1972] proposed an algorithm
for constructing locally equiangular tri-
angulations by local improvement. Start-
ing with an arbitrary triangulation of
the sites, edges are “flipped” according
to the equiangularity criterion (stated in
Section 1.2 .4) until no more such ex-
changes are required. Sibson [19771 suc-
ceeded in proving that this procedure
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Figure 19. Equiangularity and empty circle prop-
erty.

actually constructs the Delaunay tri-
angulation. Lawson’s original method
was somewhat speeded up by Lee and
Schachter [1980] who proceed incremen-
tally and apply the edge flipping proce-
dure after each insertion of a new site.
McLain [19761 uses the empty circle
property to construct the Delaunay trian-
gulation by successively adding triangles
whose circumcircles are empty of sites.
In fact, Figure 19 illustrates the equiva-
lence of the empty circle property and
the equiangularity criterion. Although
being simple to implement, all these al-
gorithms have an 0( nz)-time behavior in
the worst case. On the other hand, Maus
[19841 reports that a modification of
McLain’s algorithm based on preparti-
tioning exhibits an 0(n) expected run-
ning time for uniformly distributed sites,

Lee and Schachter [1980] gave an
0( n log rz)-time Delaunay triangulation
algorithm; it uses divide and conquer and
is similar to Shames and Hoey’s primal
Voronoi algorithm. A modified imple-
mentation using prepartitioning was
shown by Dwyer [19871 to run in
O(n log log n) expected time while re-
taining the optimal 0( n log n) worst-case
time; it generalizes to the LP-metrics for
p > 2. Drysdale [19901 modifies the
divide-and-conquer approach to compute,
in 0( n log n) time, Delaunay triangula-
tions generated by general convex dis-
tance functions. A recent algorithm by
Guibas et al. [19901 inserts (point) sites
in random order. Using a structure simi-
lar to the Delaunay tree [Boissonnat and
Teillaud 19861, earlier versions of the

triangulation are maintained to facili-
tate the determination of the triangle
covering the next site to be inserted. This
practical algorithm exhibits a random-
ized running time of 0( n log n) and is
similar in spirit to Clarkson and Shor’s
[1988] convex hull algorithm.

The question arises as to which of the
planar Delaunay algorithms can be ex-
tended to higher dimensions. We have
already seen some early (although widely
used) algorithms at the beginning of this
section. It should be further observed that
the method of higher dimensional em-
bedding actually first constructs the
Delaunay triangulation (via a convex
hull), then derives the Voronoi dia-
gram via dualization. Recently, Rajan
[19911 proved a property of d-
dimensional Delaunay triangulations re-
lated to equiangularity. It implies an
incremental algorithm that makes the
triangulation locally Delaunay after each
insertion of a new site by applying a
triangle-flipping procedure similar to
Lawson’s method in the plane. The algo-
rithm is worst-case optimal for odd d.
Whether every d-dimensional triangula-
tion can be made Delaunay by local
improvement remains open.

1.3.7 Storage Representation and Dynamization

The Voronoi diagram maybe viewed as a
data structure that organizes its defining
sites in a prescribed manner. A host of
applications of this data structure in
computational geometry will be given in
Section 2. Out of a number of possibili-
ties to store the planar Voronoi diagram
or, equivalently, its dual, the Delaunay
triangulation, the quad-edge structure
proposed by Guibas and Stolfi [19851 is
particularly practical, Essentially, each
edge is stored as a pair of directed edges.
Each directed edge, in turn, stores the
vertex it originates from and pointers to
the previous and to the next (directed)
edge of the region to its left, The quad-
edge data structure provides a clean
separation between topological and geo-
metrical aspects and supports the imple-
mentation of standard techniques for
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computing Voronoi diagrams, such as di-
vide and conquer or incremental inser-
tion. The structure has been generalized
to higher dimensions by Dobkin and
Laszlo [19891 (facet-edge structure in
R3) and by Brisson [1989] (cell-
tuple structure in R ~). These data struc-
tures represent the incidence and
ordering information in a cell com-
plex in a simple uniform way. See also
Aurenhammer and Edelsbrunner [1984]
and Edelsbrunner et al. [1986] for
different data structures representing
cell complexes.

Like any data structure, the Voronoi
diagram can be dynamized, that is,
maintained for a set of sites that varies
over time by insertion or deletion. The
case of site insertion is covered by the
algorithms mentioned before that build
up the diagram on line by introducing
new sites. Integration of a new region
into the Voronoi diagram for n sites in
the plane clearly costs 0(n) time in the
worst case since the region may have n

edges. Gowda et al. [1983] handle inser-
tions and deletions of sites in 0(n) time
by means of the so-called Voronoi-tree
that occupies 0( n log log n) space. This
tree records the history of a divide-and-
conquer construction of the diagram
(Figure 20). Its leaves hold the sites in
lexicographical order. Each inner node is
associated with the diagram that comes
from combining its sons’ subdiagrams.
The idea originates with Overmars [1981]
who, however, did not give details of the
method or its storage requirement. By a
result by Aggarwal et al. [1989a], dele-
tion of a given site can be performed in
time proportional to the number of edges
of its region.

Using the Delaunay triangulation, a
planar set of sites can be organized into a
hierarchical data structure, called the
Delaunay tree by Boissonnat and
Teillaud [1986]. This structure is semidy -
namic; it allows the insertion of sites and
supports the retrieval of the triangle in
which a given point falls in efficient
expected and worst-case time. The
Delaunay tree reflects the history
of an incremental construction of the

Delaunay triangulation (Figure 21).
Any triangle T destroyed by insert-
ing a new site gets as sons (solid
pointers) the new triangles sharing
an edge with T. Remaining triangles ad-
jacent to T in such an edge get the re-
spective new triangle as a stepson (dotted
pointers). Guibas et al. [19901 further
developed this structure. Among other
results, they showed that the expected
number of structural changes of the
Delaunay tree is 0(n) if n sites are
inserted in random order into an (ini-
tially empty) Delaunay triangulation.

A different way of dynamiting Voronoi
diagrams or Delaunay triangulations is
to allow movement of sites (continuous
updates) rather than their insertion or
deletion (discrete updates). The Voronoi
diagram of continuously moving sites will
change its shape continuously, although
only at “critical” points in time will the
combinatorial structure of the diagram
change. Aside from degenerate cases,
such combinatorial changes always are
local (Figure 22). An edge between two
regions (here 2 and 4) collapses to a ver-
tex and reappears between two others
(1 and 3) just in the moment when the
four sites involved get cocircular. In the
dual environment, this process corre-
sponds to flipping the diagonals of the
quadrilateral spanned by these four sites,
which is the union of two Delaunay tri-
angles. This suggests the definition of
the Delaunay history of a set of moving
sites as the chronologically ordered list of
edge flips in their Delaunay triangula-
tion. Tokuyama [1988] considered the
case of two rigidly moving sets of n and
m sites, respectively. Their Delaunay
history has length 0( nm) and can be
computed and preprocessed in
0( nm log nm) time in order to retrieve
the Delaunay triangulation (and the
Voronoi diagram) in 0( n + m) time at

any given moment. For n sites moving
in fixed but individual directions and
with constant individual velocity, the
Delaunay history has length 0( n3).
This result by Imai et al. [1989] should
be contrasted with the intuitive

argument that
():

cocircularities may
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Figure 20. Voronoi tree [Gowda et al. 19831.

occur among n sites. Guibas et al. [19911
showed that the bound remains nearly
cubic if the sites are moving continu-
ously along rather general trajectories.
See also Aonuma et al. [1990] for related
results.

1.3.8 Computing Voronoi Diagrams in Parallel

Parallelizing algorithms in computa-
tional geometry usually is a complicated

task since many of the techniques used
(incremental insertion or plane sweep,
for instance) seem inherently sequential,
Since it is one of the fundamental struc-
tures in this area, the Voronoi diagram
has been among the first geometrical
structures whose construction has been
parallelized. The underlying model of
computation mostly has been the CREW
PRAM (concurrent-read, exclusive-write
parallel random access machine), where
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processors share a common memory
that allows concurrent reads but no
simultaneous writes to the same cell.

As has been mentioned, !2( n log n) is a
lower time bound for sequentially con-
structing the Voronoi diagram for n sites

in the plane. Therefore, O(log n) parallel
time is the best that can be achieved
when only 0(n) processors are to be used.

In her pioneering work, Chow [1980]
showed that convex hulls in three space
can be computed in 0(log3 n) time using
0(n) processors. By their duality to
planar Voronoi diagrams, the complexity
carries over. Aggarwal et al. [1988] im-
proved the Voronoi diagram construction
to 0(log2 n) parallel time by applying
divide and conquer. Their approach criti-
cally depends on restricting the domain
that can contain the “merge chain”
(compare Figure 17) and has been im-
proved recently by Cole et al. [1990]
using a tailor-made data structure. An
optimal parallel construction of Voronoi
diagrams is still outstanding, however.

Goodrich et al. [1989] construct the
Voronoi diagram for line segment sites
in 0(log2) time using 0(n) processors.
Their approach to constructing this im-
portant generalization is similar in spirit
to Yap’s [1987] curve segment algorithm.
AS a related question, Schwarzkopf
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[1989] addresses the problem of comput-
ing the digitized image of a planar
Voronoi diagram using certain processor
networks.

2. ALGORITHMIC APPLICATIONS

The precomputation of a Voronoi dia-
gram is the initial step of various algo-
rithms in computational geometry. We
have already mentioned some of them in
the Introduction, In this part of the
survey we demonstrate the broad
scope of algorithmic applications of
Voronoi diagrams and of closely related
structures.

2.1 Closest-Site Problems

According to their definition, Voronoi di-
agrams apply naturally to various prox-
imity problems. Determining closest sites
plays a dominant role in this context
since it appears as a subroutine of many
geometric algorithms. Applications in-
clude clustering and contouring and var-
ious other problems whose relation to
proximity may not be so obvious.

2.1.1 Nearest-Neighbor Queries

Probably the most popular problem in
this area is the post-office problem. How
should a fixed set of n sites in the plane
be preprocessed in order to determine
quickly the site closest to an arbitrarily
chosen point (the query point)? The post-
office problem is motivated in the
Introduction as a two-dimensional
file-searching problem. Another impor-
tant application stems from a common
data classification rule that requires as-
signment of new data points to the same
class in which their nearest neighbor lies.
An early solution yielding O(log n) query
time but requiring 0( nz) storage was
provided by Dobkin and Lipton [19761.
Shames [19751 pointed out that the
Voronoi diagram of the sites divides the
plane into regions of equal answer with
respect to the post-office problem: By def-
inition, the region of a site contains all
points closer to this site than to all other
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sites. This reduces the problem to finding
the region that contains the query point,
an approach that became powerful once
efficient data structures were developed
for the latter problem: point location in
planar straight-line graphs [Kirkpatrick
1983; Edahiro et al. 1984; and
Edelsbrunner et al. 1986]. Actually,
logarithmic query time and linear
storage are achieved. This is asymp-
totically optimal since it matches
the information-theoretical lower bound.

Shames’ approach in conjunction with
Kirkpatrick’s was worked out in a geo-
metrically dual setting by Edelsbrunner
and Maurer [1985]. Usage of a structure
related to Boissonnat and Teillaud’s
[19861 Delaunay tree even obviates the
need of postprocessing the Voronoi dia-
gram for point location; Guibas et al,
[1990] show that post-office queries are
supported in 0(log2 n) expected time by
this structure. An off-line solution to the
post-office problem (all query points are
given in advance rather than being spec-
ified on line) was presented by Lee and
Yang [19791.

In principle, higher dimensional vari-
ants of the post-office problem may be
solved via the Voronoi diagram, too.
Their practical relevance is evident from
the equivalent file-searching problem for
multiattribute data mentioned in the In-
troduction. Although Chazelle [1985]
showed that point-location in a Voronoi
diagram in R3 can be performed effi -
ciently, the approach suffers from a con-
siderable storage overhead of @(n2 ) that
comes from the worst-case size of the dia-
gram. In d >3 dimensions, the pro-
hibitively large size of the diagram may
be reduced to some extent for that
purpose [Dewdney 1977].

Generalizations of the post-office prob-
lem for nonpoint sites or for modified
distance functions may be solved by
means of an appropriate Voronoi dia-
gram as well. We particularly mention
Mount [1986] (geodesic distance on a
polyhedral surface) and Aurenhammer
et al. [19911 (probabilistic distances in
the plane) as two generalizations leading
to interesting types of diagrams.
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2. 1.2 k-Nearest-Neighbor Queries

An obvious and important generalization
of the post-office problem is to ask for the
k closest sites for a query point. It was
observed by Shamos and Hoey [1975] that
the order-k Voronoi diagram divides the
plane into regions of equal answer with
respect to this problem. Postprocessing
the diagram for point-location yields a
data structure that handles queries in
O(log n + k) time and requires O(k2 n)
storage. [The diagram may contain
@(k( n – k)) regions for each of which
the k closest sites are stored.] If k is
specified in the input, an 0( n3)-space
data structure yielding the same query
time was obtained by Edelsbrunner et al.
[19861 via embedding the whole family of
order-k Voronoi diagrams for the sites
into an arrangement of planes. A tech-
nique for compacting order-k Voronoi di-
agrams recently developed by Aggarwal
et al. [19901 drastically reduces the stor-
age requirement of these approaches [to
0(n) for fixed k and to 0( n log n) if k is
in the input] while still achieving the
optimal O(log n + k) query time.

A related problem is the circular re-
trieval problem that requires a report of
all sites covered by a given query disk.
In facility location, for example, one
might be interested in all sites being
influenced by a new facility of given ra-
dius of attraction. First steps toward a
satisfactory solution were undertaken by
Bentley and Maurer [19791. Their method
is based on a certain sequence of order-k
Voronoi diagrams of the given sites and
has been refined by Chazelle et al.
[1986b] and recently by Aggarwal et al.
[19901. The latter refinement yields a
data structure using 0( n log n) space and
achieving O(log n + t) query time, where
t is the number of sites in the query disk.

2. 1.3 Closest Pairs

Finding the closest pair among n sites
certainly belongs to the most fundamen-
tal proximity problems. One obvious ap-
plication arises in collision detection; the
two closest sites are in the greatest dan-
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Figure 23. All closest pairs and the largest empty
circle.

ger of collision, In other applications, for
example, in clustering, one needs to find
the closest site for each of the sites. The
straightforward approach clearly results
in calculating 6( nz) distances. In the
planar case, both questions were settled
in optimal time 0( n log n) by Shamos
and Hoey [19751 by precomputing the
Voronoi diagram of the sites. See Figure
23 depicting all closest pairs by bold seg-
ments. Since the region of a site and the
region of its closest site always share an
edge, one only needs to visit each edge
and calculate the distance between the
two sites whose separator yields that
edge. This clearly takes 0(n) time once
the diagram is available. Recently,
Hinrichs et al. [1988a, 1988bl showed
that it suffices to maintain certain parts
of the diagram during a plane sweep
rather than to compute the diagram ex-
plicitly in order to solve both problems in
optimal time. Curiously, the furthest pair
of sites cannot be derived directly from
the furthest site Voronoi diagram but
requires some additional point-location
[Toussaint and Bhattacharya 19811.
Finding the furthest pair means de-
termining the diameter of the under-
lying set of sites and thus has several
applications.
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2.2 Placement and Motion Planning

Voronoi diagrams have the property that
each point on a Voronoi edge maximizes
the distance to the closest sites. Al-
though being straightforward, this prop-
erty is essential for the usefulness of
Voronoi diagrams in placement and
motion planning problems.

2.2.1 Largest Empty Figures

The largest empty figure problem is the
following: Given n point sites in the
plane, where should a figure of pre-
scribed shape be placed so that its area is
maximized but no site is covered? If the
figure is a circle, the problem can be
reformulated as finding a new site being
as far as possible from n existing ones.
Shames and Hoey [1975] mentioned the
relevance of this facility location problem
to operations research and industrial en-
gineering. They also showed how to find
a largest empty circle in 0( n log n) time:
The center of such a circle is either a
vertex of the Voronoi diagram of the sites
or the intersection of a Voronoi edge and
the boundary of the convex hull of the
sites; see Figure 23 illustrating the oc-
currence of the latter case. Thus atten-
tion can be restricted to 0(n) possible
placements of the circle,

The smallest enclosing circle of the
sites is obtainable in 0( n log n) time in a
similar manner. Shames [1978] claimed
that this circle always will be centered at
a vertex of the furthest site Voronoi dia-
gram. This was proved true by Toussaint
and Bhattacharya [19811. From Figure
24 it can be seen that the edges of this
diagram form a tree structure. This re-
stricts the maximum number of vertices,
and thus of placements of the circle, to
n – 2.7 On both problems, there exists

7 It is easily seen that the regions of the furthest
site diagram are either unbounded or empty, The
corresponding furthest site Delaunay triangulation
thus is an outer planar graph (with at most n sites
as vertices), which is well known to contain at most
2 n – 3 edges and n – 2 triangles.
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Figure 24. Furthest site Voronoi diagram and

smallest enclosing circle.

a considerable literature [Preparata
and Shames 1985]. In particular, the
problems are solvable in 0(n) time by
means of linear programming as was
demonstrated by Megiddo [1983].

The Voronoi diagram approach gener-
alizes—while still achieving the
0( n log n)-time bound—to other figures
provided these are “circles” with respect
to the underlying distance function. For
example, the largest empty axis-parallel
square can be found using the Voronoi
diagram in the L~-metric. Chew and
Drysdale [1985] find largest empty
homothetic copies of generally shaped
convex figures via diagrams that are
induced by a rather general class of
distance functions. The determination of
the largest empty axis-parallel rectangle
turns out to be somewhat more compli-
cated; the aspect ratio of the rectangle,
and thus the distance function to be used,
is not known in advance. This problem
has an obvious application. If we are
given a piece of fabric or sheet metal and
the sites are flaws, what is the largest
area rectangular piece that can be sal-
vaged? Chazelle et al. [1986a] gave an
0( n log3 n)-time solution. They use an
interesting type of Voronoi diagram that
can be intepreted as the power diagram
of a certain set of circles [Edelsbrunner
and Seidel 1986; Aurenhammer and Imai
1988]. The running time above was

ACM Computing Surveys, Vol. 23, No, 3, September 1991



www.manaraa.com

372 “ Franz Aurenhammer

improved to 0( n log n) by Aggarwal and
Suri [1987] using different methods. The
properties of the Voronoi diagram for line
segment sites have been exploited by
Chew and Kedem[1989] to find the largest
similar copy of a convex polygon such
that no segment is overlapped. As a re-
lated question, Aonuma et al. [1990] place
a given convex polygon inside and as
far as possible from the boundary of an
arbitrary polygon. Their algorithm relies
on Voronoi diagrams dynamized with
respect to certain site movements.

2.2.2 Translational Motions

Voronoi diagrams are an aid in the plan-
ning of collision-free motions of a figure
in the presence of obstacle sites. Prob-
lems of this kind arise in robotics. The
Voronoi diagram approach plays an im-
portant role in this area and is called the
retraction method. Intuitively speaking,
when moving on the edges of the Voronoi
diagram the robot always keeps as far
as possible from the neighboring ob-
stacles. This was first perceived by
Rowat [19791; several authors pursued
this idea further.

For many applications it is feasible to
approximate the scenario of obstacles by
polygonal sets. O’Dunlaing and Yap
[19851 plan the motion of a disk between
two given points in this environment. In
a preprocessing step, the Voronoi dia-
gram of the obstacles is computed by tak-
ing their n boundary segments as its
defining sites. The graph formed by the
0(n) straight or parabolic edges of the
diagram can be computed in 0( n log n)
time [Kirkpatrick 1979; Fortune 19871.
Figure 25 depicts the graph (dashed) for
four line segment obstacles (bold). Ob-
serve that each point on an edge is
equidistant from its two closest obsta-
cles. Therefore, for each edge, it is easy
to compute the minimum clearance when
moving on it. To produce a collision-free
motion (if it exists), one first finds the
edges e and e’ closest to the center of the
disk in initial and final position, respec-
tively, and then searches the graph start -
ing with e until either e’ is reached or
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Figure 25. Voronol diagram for line segments.

the clearance falls short of the disk
radius. All of that can be done in
additional 0(n) time.

Compared to others, this simple ap-
proach has the additional advantage that
the disk radius need not be known dur-
ing the preprocessing phase. Extending
the approach, Leven and Sharir [19871
plan translational motions of a convex
planar robot in 0( n log n) time. Note
that generally shaped robots may be cir-
cumscribed by a convex figure, and paths
feasible for the figure will do for the
robot as well.

2.2.3 Rotational Motion

Allowing the robot to rotate adds a third
degree of freedom to the problem. Much
attention has been paid to moving—
amidst polygonal obstacles— a line
segment that is allowed to rotate. The
position of a segment (of given length) in
the plane is determined by the triple p =
(x, y, p) indicating the coordinates of one
endpoint and the orientation. The set of
all triples p such that the corresponding
segment L(p) does not collide with any
obstacle is a subset of the underlying
three-dimensional configuration space.
Within this subset, we may define a
Voronoi diagram as the set of all p such
that -L(p) is equidistant from its two
closest obstacles; closeness is with re-
spect to the minimum distance between
segment and obstacle.

O’Dunlaing et al. [1986, 1987] pro-
vided a thorough analysis of this dia-
gram (which seems to belong to one of
the most complex types). In particular,
they showed that the diagram can be
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constructed, and a motion be planned in
0( n2 log n log* n) time, thus being a sig-
nificant improvement over earlier tech-
niques. Sifrony and Sharir 11986] speeded
up the method—by introducing a related
graph-to run in O(t log n) time, where
t = 0( n2) is a parameter dependent on
the segment length. Canny and Donald
[19881 simplified the method by relaxing
the definition of the diagram.

There are several other versions of the
motion planning problem to which
Voronoi diagrams apply [Rohnert 19881.
An axiomatic characterization of the
boundary properties of a generally shaped
three-dimensional scenaro in order to de-
fine a Voronoi diagram suited to motion
planning was proposed by Stifter [19891.
For a more detailed introduction and re-
view of the use of Voronoi diagrams in
motion planning, the interested reader
may consult Schwartz and Yap [1986] or
Alt and Yap [19901.

2.2.4 Path Planning

A special case of planning collision-free
motions, where the robot is taken to be a
single moving point, is path planning.
Finding euclidean shortest paths in the
presence of polygonal (or polyhedral) ob-
stacles has received particular interest.
For example, consider the problem of
determining that location, for each of m
fixed locations within a polygonal factory
floor, reachable on the shortest path. This
problem can be solved in 0( n +
m)log2 ( n + m) time by first constructing
the Voronoi diagram of n sites under the
geodesic metric interior to a simple poly-
gon with m edges [Aronov 1989]. The
site yielding the shortest path to a par-
ticular site defines a neighboring region
in the diagram. This improves an earlier
result by Asano and Asano [19861. Re-
lated questions can be solved by means of
the furthest site geodesic Voronoi dia-
gram inside a polygon; Aronov et al.
[1988] showed how to construct this

structure efficiently.

The following important question is

still unsolved. Is it possible to compute

the geodesic Voronoi diagram for n sites
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Figure 26. Geodesic separator.

and a collection of disjoint and con-
vex polygons with a total of m edges in
0( n + m)log( n + m) time? The main
problem in this respect is that com-
puting geodesic distances is not a
constant-time operation, Figure 26 shows
the separator (dashed) of two sites under
the geodesic distance among two convex
polygons (bold). It is composed of straight
line and hyperbola segments meeting at
intersections with visibility lines (solid).

Path-planning problems in three-
dimensional polyhedral spaces have been
studied, by among other authors, Mount
[19861, Mitchell et al. [1987], and
Baltsan and Sharir [1988]. For example,
finding shortest paths lying entirely on a

(generally nonconvex) polyhedral surface

is of interest in areas like autonomous

vehicle navigation, where hilly terrains

are being modeled. Efficient solutions are

obtained by using Voronoi diagrams de-

fined in such spaces. Moreover, since

finding shortest paths is closely related

to determining visibility between obsta-

cles, Voronoi diagrams involving visibil-

ity constraints have been exploited in

this context. An example is the peeper’s

Voronoi diagram used by Baltsan and

Sharir [1988] and by Aronov [1989]. Each

point in the plane is assigned to the clos-

est visible site, and visibility is con-

strained to a segment on a line avoiding

the convex hull of the sites (see Figure

36). This structure can attain a size of

@ n2) and is constructible in 0( TL2) time

[Aurenhammer and St6ckl 1988].

2.3 Triangulating Sites

Intuitively speaking, triangulating n
sites in the plane means partitioning the
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plane into triangles whose vertices are
all and only the sites. Triangulations are
important because they (as being planar
graphs) on the one hand have only linear
size and, on the other hand, establish
connectivity information among the sites
that suffices for many applications.

2.3.1 Equiangular Triangulations

An early and major application is the
interpolation of functions of two vari-
ables, where function values initially are
known only at irregularly placed sites.
Practical evidence stems from finite
element methods or from processing
graphical data, for example, in terrain
modeling. Given a triangulation of
the sites, the function value at an arbi-
trary point can be computed by interpo-
lation within the triangle containing that
point. Lawson [1972] and McLain [1976]
have reported that a triangulation is well
suited to interpolation if its triangles are
nearly equiangular. The Delaunay trian-
gulation is the unique triangulation that
is optimum in this sense [Sibson 1977].
Sibson [19801 further suggests the use of
local coordinates obtained from sites be-
ing adjacent in this triangulation in or-
der to compute smooth surfaces. There
might, however, occur more-sided poly-
gons (rather than triangles) if various
sites are cocircular. Mount and Saalfeld
[19881 showed how to triangulate such
polygons in order to retain equiangular -
ity. This process does not affect the 0( n

log n) time needed for constructing the
Delaunay triangulation.

Given a set of sites and a particular
function value (height) at each site, any
triangulation of the sites defines a trian-
gular surface in space. The “roughness”
of such a surface T may be measured by
the Sobolev seminorm

where I A I denotes the area of the spa-
tial triangle A, and a~ and 6A denote the
slopes of the plane containing A. By ex-
ploiting equiangularity, Rippa [1990]
showed that the Sobolev seminorm is

Figure 27. Constrained Delaunay triangulation.

minimized if the underlying triangula-
tion of the sites is Delaunay. This re-
sult is somewhat surprising since the
Delaunay triangulation–although itself
clearly being independent of the height
at each site —optimizes a quantity that
depends on these heights.

2.3.2 Constrained Triangulations

In a constrained Delaunay triangulation,
prescribed edges are forced in as part of
the triangulation. See Section 3.3 for a
formal definition. Figure 27 depicts such
a triangulation with two prescribed edges
(bold), This structure can be constructed
in 0( n log n) time [Seidel 1988] and has
two major applications. First, it provides
a more realistic approach to modeling
terrain surfaces since salient elements
like mountain ridges or valleys may be
prescribed. Lee and Lin [1986] showed
that the equiangularity criterion is still
fulfilled by constrained Delaunay trian-
gulations, Since triangles with small an-
gles produce a poor computer graphics
display, the best possible visualization is
achieved. Triangulations inside a simple
polygon are an important special case.
The boundary edges of the polygon will
not be edges of the (unconstrained)
Delaunay triangulation of the polygon
vertices, in general, and thus have
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to be prescribed.8 Chew [1989b]
used constrained Delaunay triangula-
tions to generate triangular meshes
inside polygons where all angles are
between 30° and 120°.

Second, constrained Delaunay triangu-
lations are an aid in path planning. In
order to plan a path from A to B that
avoids a set of n line segment obstacles
(and thus arbitrarily shaped polygonal
regions, for instance) one might con-
struct this triangulation-by taking A
and B and the segment endpoints as sites

and the segments as prescribed
edges— and then search the graph formed
by triangulation edges. This was ob-

served by Chew [19861, who also proved
the following interesting result: Between
any two sites there is a path in this
triangulation whose length is at most

~ times the geodesic distance between
them, provided the L1-metric (instead of
the euclidean) is taken to define the tri-
angulation. This yields an 0( n log n)-
time algorithm for approximating the
optimal path, which is a significant
improvement over exact methods.

Dobkin et al. [1990] proved a factor of
about 5 for (nonconstrained) euclidean
Delaunay triangulations and the eu-
clidean distance. Their result has been
improved to a factor of about ~ by Keil
and Gutwin [19891. Results of this kind
are rather surprising since they show the
existence of a sparse graph being almost
as “good” as the complete graph on n
sites, independently of n.

Let us mention another application.
Given n sites and some prescribed (non-
crossing) edges between them, a diagonal
is a new edge that does not cross any

prescribed one. A popular heuristic for
triangulations with minimum total edge
length is the greedy method. This method

6 It is an interesting question how many new sites
have to be placed on the polygon boundary in order

to force it in as a subgraph of the Delaunay trian-
gulation. Schwarzkopf (personal communication,
1990) observed that !l(nz) sites may be necessary
for an n-vertex polygon. A known upper bound is
2 o(m log ~), The O(~) bound ~laimed in Boissonnat

[19881 involves a constant depending on the angles
of the polygon.

iteratively adds shortest diagonals by
considering the current (and initially

empty) set of edges as prescribed. Lingas

[19891 reports that a shortest diagonal
can be found in 0(n) time given the

constrained Delaunay triangulation. This

gives an 0( n2 log n)-time and 0( n)-space

algorithm for constructing such greedy
triangulations. Previous methods re-

quired 0( n2) space. Whether a minimum

length triangulation for n sites in the

plane can be computed in polynomial

time is an important open question.

2.3.3 3D Triangulations

The problem of “triangulating” point
sites in three-space arises in the decom-

position of three-dimensional objects, for

example, of computer-generated solid

models or of objects specified by planar

cross sections. Field [19861, Boissonnat

[1988], and others report on advantages

of tetrahedral decompositions and pro-

pose the use of the Delaunay triangula-

tion. Although there is some evidence for

the quality of thus produced tetrahedral,

some important properties of the two-

dimensional Delaunay triangulation do

not carry over.

First, the number of tetrahedral maybe

E)( n2), hence leading to a storage re-

quirement that is prohibitive for many

applications. This fact suggests the use

of postprocessing. ~hazelle et al. [1990]

showed the following somewhat counter-

intuitive result: The number of tetrahe -

dra may always be lowered to about n G

by adding about & new sites. This pro-
cess will also eliminate elongated (and
thus undesirable) tetrahedral, In fact,
adding 0(n) (well-chosen) sites will al-
ways reduce the size of the triangulation
to 0(n), with the additional effect that
only constantly many edges emanate

from each site [Bern et al. 19901.

Second, the question of finding a

three-dimensional analog to the equian -

gularity property is still unsettled. Rajan

[19911, however, recently succeeded in

proving a related property. The three-

dimensional Delaunay triangulation

minimizes the largest containment
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radius of the tetrahedral; that is, the ra -
dius of the smallest sphere containing a
tetrahedron. This sphere coincides with
the circumsphere if and only if its center
lies within the tetrahedron. Note that
the containment radius measures the te-
trahedron size more appropriately than
the circumradius since small but elon-
gated tetrahedral may have arbitrarily
large circumradii. The Delaunay trian-
gulation is the most compact triangu-
lation in this sense. This property is
quite remarkable as—unlike the two-
dimensional situation—the number of te-
trahedral is not independent of the way of
triangulating the given sites but may
vary from linear to quadratic.

There is another property of Delaunay
triangulations that turns out to be useful
in three-dimensions. For a set of trian-
gles in three-space, an in-front/behind
relation may be defined with respect to a
fixed viewpoint. Generalizing a result by
De Floriani et al. [19881, Edelsbrunner
[19891 proved that this relation is acyclic
for the triangles in a three-dimensional
Delaunay triangulation, no matter where
the viewpoint is chosen. This is relevant
to a popular algorithm in computer
graphics that eliminates hidden surfaces
by first ordering the three-dimensional
objects with respect to the in-front/
behind relation and then drawing them
from back to front, thus over-painting
invisible parts. For Delaunay triangles,
such an ordering always will exist, which
is quite important in view of their
frequent use in practice. In particular,
so-called a-shapes are made of such
triangles. a-shapes have been used by
Edelsbrunner et al. [19831 to model the
shape of point sets.

2.4 Connectivity Graphs for Sites

The Delaunay triangulation contains, as
subgraphs, various structures with far-
ranging applications. We will briefly
discuss some of them in the sequel.

2.4.1 Spanning Trees

Given n point sites in the plane, a
(euclidean) minimum spanning tree is a

straight-line connection of the sites with
minimum total edge length. See Figure 8
for an illustration. Not surprisingly, this
structure plays an important role in
transportation problems, pattern recog-
nition, and cluster analysis. Construc-
tion methods working on general
weighted graphs have been known for a
long time; see Kruskal [19561, Prim
[19571, and, more recently, yao [19751
whose algorithm works in 0( m log log n)
time for a graph with m edges. All these
algorithms use a basic fact: For any par-
tition of the sites into two subsets, the
shortest edge (edge of minimum weight)
between the subsets will be present in
the tree. Applying Yao’s algorithm di-
rectly to the complete euclidean distance
graph for the sites results in an Q( nz)
running time, however.

Shames and Hoey [19751 recognized
that the edges of a minimum spanning
tree must be Delaunay edges. This inter-
esting and important property holds
since, by the fact mentioned above, each
tree edge is the diameter of a disk empty
of sites and, by definition, each triangu-
lation edge is a chord of some disk empty
of sites. From the computational view-
point, Yao’s algorithm just needs to be
applied to the Delaunay triangulation— a
graph with 0(n) edges. In fact, 0(n) time
suffices to derive the minimum spanning
tree from the Delaunay triangulation
[Preparata and Shames 19851. This gives

an 0( n log n)-time algorithm, which is
optimal by reduction to sorting n real
numbers.9

The relationship above extends to more
general metrics. For example, Hwang
[1979] extends it to the L1-metric (com-
pare Figure 3). One may be tempted to
conjecture that the (euclidean) maximum
spanning tree can be obtained from the
furthest site Delaunay triangulation of
the sites (the dual of the furthest site

9 The minimum spanning tree should not be con-
fused with the minimum Steiner tree of a set of

sites, a concept where the addition of new points is
allowed in order to minimize the total edge length.
The problem of constructing a minimum Steiner
tree is NP-complete [Garey et al. 1976].
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Voronoi diagram). Shames [1978] showed
that this conjecture is erroneous.
Eppstein [1990], however, pointed out
that two sites are connected in one of
the k smallest spanning trees only if
both belong to the same subset of sites
defining a region of the order-(k + 1)
Voronoi diagram. This leads to an
improved algorithm for finding the k
smallest spanning trees.

The efficient construction of the mini-
mum spanning tree in three space has
turned out to be a diffkult problem. Pre -
computation of the Delaunay triangula-
tion does not help in general since the
complete graph may be the output in the
worst case. Efficient approximation and
expected-time algorithms were given,
among other authors, by Vaidya [1988a]
and Clarkson [1989]. The first algorithm
running in subquadratic worst-case time
is due to Yao [1982]; it can be speeded up
to run in 0( n log n)15 time by using
Voronoi diagrams of carefully chosen
grOUpS of sites. By exploiting—in addi-
tion—an interesting relation to a certain
closest point problem, Agarwal et al.
[19901 were able to bring down the com-
plexity to 0(n413 log4/3 n). It still re-
mains open whether an algorithm
matching the best currently known lower
bound of !2( n log n) can be developed.

2.4.2 Spanning Cycles

A graph connecting n sites is called
Hamiltonian if it contains some cycle
passing through all the sites. The ques-
tion of whether the Delaunay triang-ula-
tion in the plane is Hamiltonian arose in
pattern recognition problems where
a reasonable simple curve through
the given sites is desired. Although
counter-examples were given by
Kantabutra [19831 and Dillencourt
[1987a, 1987b], Delaunay triangulations
have been used with success for this
problem. This gives evidence that this
graph is Hamiltonian with high proba-
bility. Dillencourt [1987cI supports this
thesis by proving a result concerning the
connectivity of Delaunay triangulations.

A (euclidean) traveling salesman tour
is a minimum-length cycle spanned by n

Figure 28. Delaunay triangulation and salesman
tour [Dillencourt 1987].

sites. Constructing traveling salesman
tours is a prominent problem of combina-
torial optimization. Papadimitriou [1977]
showed its NP-completeness. The prob-
lem becomes tractable for tours being
close to optimal. It follows from the above
discussion that the Delaunay triangula-
tion will not contain a traveling sales-
man tour, in general. 10 See also Fig-
ure 28 where the triangulation and the
tour are drawn solid and dashed, re-
spectively. Rosenkrantz et al. [19771,
however, observed that traversing the
minimum spanning tree twice will pro-
duce a tour that is within a factor of
2 of the optimum: Since removing an
edge from the traveling salesman tour
leaves a spanning tree of the sites, this
tour must be longer than the minimum
spanning tree. Note that this approxima-
tion algorithm takes only 0( n log n)

time. By partitioning the minimum
spanning tree into paths, then construct-
ing a minimum-length matching of their
endpoints, Christofides [1976] improved
this to a factor of 1.5, with the expense of
an 0( n2 A log4 n) construction time due

10 This is even true for special traveling salesman

tours called necklace tours that are cycles realiz-
able as the intersection graph of disks around the
sites. Necklace tours can be found in polynomial
time in case of their existence [Edelsbrunner et al.
1987].
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Figure 29. Relative neighborhood graph and
Gabriel graph.

to the best known matching algorithm by
Vaidya [1988bl.11

2.4.3 Relative Neighborhood and Gabriel Graph

It is worth mentioning two graphs that
are “in between” the minimum spanning
tree and the Delaunay triangulation in
the sense of making explicit more prox-
imity information than does the former
and less than does the latter. Among
them is the relative neighborhood grap~
that connects two sites provided no other
site is closer to both of them than their
interpoint distance. In Figure 29, the
edges of the relative neighborhood graph
are shown solid. Toussaint [19801 re -
ported the usefulness of this structure in
pattern recognition, and Supowit [19831
succeeded in constructing it in 0( n log n)
time, given the Delaunay triangulation.
Yao (personal communication, 1988) an-
nounced that 0(n) time suffices for de-
riving the relative neighborhood graph
from the latter. Interestingly, this graph
retains its linear size in higher dimen-
sions (provided a general placement of
the sites). This stresses the importance of
its rapid construction, especially in three
dimensions, since it would imply fast
minimum spanning tree algorithms. Un-

11A minimum-length matching of 2 n sites is a
graph with n edges joining pairs of sites, such that
the pairs are distinct and the total edge length is
minimized. Akl [19831 showed that a minimum-
length matching is not necessarily a subgraph of
the Delaunay triangulations of the sites.

fortunately, no algorithm with signifi-
cantly subquadratic running time is
known.

A similarly defined construct is the
Gabriel graph. It contains an edge be-
tween two sites if the disk having that
edge as its diameter is empty of sites.
This concept proved useful in processing
geographical data [Gabriel and Sokal
1969; Matula and Sokal 19801. Howe
[1978] observed that the Gabriel graph
consists of just those Delaunay edges that
intersect their dual Voronoi edges. Based
on the same observation, Urquhart [19801
gave an 0( n log n) time algorithm for its
construction. It is easily seen that the
Gabriel graph is a supergraph of the rel-
ative neighborhood graph. The edges of
the former are shown solid or dashed in
Figure 29.

2.5 Clustering Point Sites

Clustering a set of n point sites in the
plane means determining partitions of
the set that optimize some predefine
clustering measure. This measure usu-
ally is a function of the interpoint
distances of the set to be clustered.

2.5.1 Hierarchical Methods

A single linkage clustering [Hartigan
19751 hierarchically clusters the sites as
follows. Initially, the sites are considered
to be clusters themselves. As long as
there is more than one cluster, the two
closest clusters are merged. The distance
of two clusters is defined as the mini-
mum distance between any two sites, one
from each cluster. This process can be
carried out in a total of 0( n log n) time
by maintaining, at each stage, the fol-
lowing Voronoi diagram: Each point of
the plane belongs to the region of the
closest cluster, and closeness is with re-
spect to the closest site within a cluster.
The regions of the two closest clusters
will always have a common edge in the
diagram. That edge corresponds to an
edge of the minimum spanning tree of
the entire set of sites [Shames and Hoey
1975].
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Figure 30. Complete linkage Voronoi diagram.

The model of complete linkage cluster-
ing is similar, except that the distance of
two clusters is defined as the maximum
distance between any pair of sites, one
from each cluster. The corresponding
Voronoi diagram, where closeness of a
point in the plane is with respect to the
furthest site in a cluster, deserves special
attention. Its size is fI( rzz) for general
clusters and 0(n) provided the convex
hulls of the clusters are pairwise disjoint
[Edelsbrunner et al. 1989]. Figure 30
shows the diagram induced by four two-
site clusters, indicated by bold segments.
For each cluster, the portion of the bisec-
tor of its two sites that lies within its
region is drawn dashed, The diagram can
be constructed in 0( n log n) random-
ized time for convex-hull disjoint and
constant-sized clusters and— in this
setting— applies to the retrieval of
expected-nearest sites [Aurenhammer
et al. 1991]. Efficient maintenance of the
diagram during the clustering process
would lead to an improved clustering al-
gorithm but remains open.

2.5.2 Partitional Strategies

As another example, consider the prob-
lem of partitioning a set of n sites into a
fixed number of t clusters such that the
minimum of the (single linkage) dis-
tances between clusters is maximized.
The following elegant 0( n log rz)-time so-

lution was proposed by Asano et al.
[19881. Construct the minimum spanning
tree of the sites and remove its t – 1

longest edges. The resulting t subtrees
already give the desired clustering. Us-
ing similar methods, Asano et al. [19881
obtain an equally efficient algorithm for
partitioning the sites into two clusters so
that their maximum diameter is mini-
mized. This problem becomes consider-
ably harder if partitions into more than
two clusters are sought. 12 Partitions into
separable clusterings have been investi-
gated by Dehne and Noltemeier [19851
and Heusinger and Noltemeier [19891,
who exploited the fact that clusters of k
sites being separable from the remaining
sites by a straight line define unbounded
regions in the associated order-k Voronoi
diagram.

2.5.3 Optimum Cluster Selection

The k-variance problem asks for select-
ing, from a given set S of n sites, a
cluster of k sites with minimum vari-
ance, the sum of squares of all intersite
distances in the cluster. Aggarwal et al.
[1989b], who cite applications in pattern
recognition, observed the following inter-
esting fact. If C is k-cluster of minimal
variance, then the region of C in the
order-k Voronoi diagram of S is
nonempty, Thus it suffices to examine
the variances of sets of k sites associated
with Voronoi regions. This can be done
in time proportional to the number,
O(k(n – k)), of regions by exploiting the
fact that sets of neighbored regions differ
in exactly two sites. Thus, the most
time-consuming step is the precomputa-
tion of a higher order Voronoi diagram.
A similar approach leads to improve-
ments if the cluster measure to be mini-
mized is not variance but diameter. If C
is a k-cluster with minimum diameter,
then C is contained in some set of 3k – 3
sites whose region in the order-(3k – 3)
Voronoi diagram of S is nonempty;

12Asano et al. [1988] claimed its NP-completeness.
Rote (personal communication, 1990), announced a
polynomial algorithm in the case of three clusters.
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see Aggarwal et al. [1989bl where
an 0(k2 n ~k log n)-time selection
algorithm is obtained in this way.

Several other clustering algorithms
that rely on Voronoi diagrams have been
described in the literature; some of them
are mentioned in the Introduction.

3. SELECTED TOPICS

A thorough understanding of the geomet -
ric, combinatorial, and topological prop-
erties of Voronoi diagrams is crucial for
the design of efficient construction algo-
rithms. This third part of the survey
presents these properties in a unified
manner and discusses their algorithmic
implications. We start with a description
of the various relationships of Voronoi
diagrams to objects in one more dimen-
sion. We continue with some topological
properties that are particularly useful for
the divide-and-conquer construction of a
large class of Voronoi diagrams in the
plane. Finally, we investigate a continu-
ous deformation of the planar Voronoi
diagram being well suited to construc-
tion by the plane-sweep technique
and extend it to generalized Voronoi
diagrams.

3.1 Geometry of Voronoi Diagrams: Their

Relationship to Higher Dimensional

Objects

Voronoi diagrams are intimately related
to several central structures in discrete
geometry. This section exhibits these re-
lationships in a comprehensive manner
and discusses some of their geometric
and algorithmic consequences. Although
our main interest is in the classical type
of Voronoi diagram, it is advantageous to
base the discussion on the more general
concept of power diagram since the geo-
metric correspondences to be described
extend to that type in a natural way. We
shall refer to d dimensions in order
to point out the general validity of the
results.

3. 1.1 Convex Polyhedral Surfaces

Consider a set S of n point sites in R d
such that each site p G S is assigned an

Figure 31. Power line of two circles.

individual real number w(p) called its
weight. ‘I’he power function of a point
x e Rd with respect to p is specified by

pow(x, p) = (.x- p) T(x -p) - w(p).

For W(p) >0, one may think of the
weighted site p as a sphere in R d with

radius - around p; for a point x
outside this sphere, pow( x, p) > 0, and

v“- expresses the distance of x
to the touching point of a line tangent to
the sphere and through x. In the plane,
the locus of equal power with respect to
two weighted sites p and q is commonly
called the power line of the correspond-
ing circles. If the circles are nondisjoint,
their power line passes through their
points of intersection; see Figure 31. In
general dimensions, the locus of equal
power is a hyperplane in R‘, called the
chordale of p and q or chor( p, q), for
short. chor( p, q) is orthogonal to the
straight line connecting p and q but
does not necessarily separate p from q,
For W(p) = w(q), chor(p, q) degenerates
to the symmetry hyperplane of p and q.
Let h( p, q) denote the closed halfspace
bounded by chor( p, q) and containing the
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Figure 32. Spatial interpretation of chordale [Aurenhammer 1987a].

points of less power with respect
The power cell of p is given by

cell(p) = ,E~~fP}h(p, q).

to p. thehyperplane

7r(p): Xd+l = 2xTp –pTp + w(p)

in R‘+ 1 [Aurenhammer 1987a]. This fact
is best explained by reference to Fimre

In analogy to classical Voronoi regions,
the power diagram of S, PD(S) is the
convex polyhedral complex defined in R d
by these cells; see Figure 4 for the case
d = 2. PD(S) coincides with the classical
Voronoi diagram of S in the case of
equally weighted sites. Note that power
cells may be empty if general weights
are used.

For technical reasons let us identify
R d with the linear subspace of Rd+ 1
orthogonal to the (d + l)s~ coordinate
axis xd+ ~. The key observation for the
existence of objects in R‘+ 1 that are re.
lated to power diagrams is that the power
function pow( x, p) can be expressed by

32. Let p and q -be two sites in- R2
whose weights are indicated by circles.
Projecting the circles onto the paraboloid

2 defines twoof revolution xs = x; + X2
planes T(p) and T(g) that intersect the
paraboloid in these projections. It is an
easy analytical exercise to prove that the
line T(p) fl x(q) projects orthogonally to
the chordale chor( p, q) in the xl xz-plane.
This correspondence holds for arbitrary
dimensions. As an immediate conse-
quence, PD(S) is the orthogonal projec-
tion of the boundary of the polyhedron
that comes from intersecting the half-
spaces of Rdw~ above m(p), for all p c S.
In fact, m is a bijective mapping between
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weighted sites in R d and hyperplanes in
R‘+ 1. Thus, for any intersection of upper
half-spaces there exists a corresponding
power diagram in one dimension lower
and vice versa.

This general result has far-reaching
implications. Most important, it shows
that power diagrams are in a geometric
and combinatorial sense equivalent to
unbounded convex polyhedra or, more
precisely, to their boundaries, that is, to
convex polyhedral surfaces. Convex poly-
hedra are well-understood objects
in discrete geometry, hence so are power
diagrams. Exact upper and lower bounds
on the numbers of their faces of various
dimensions are known. In particular,
PD(S) in Rd realizes at most n cells, L

j-dimensional faces (1 = j < d – 1),and
f. – 1 vertices, for

n–d+i–2
~=~o(~)( i )

‘io(d-~+l)(n-d: i-2)

This follows from the so-called upper
bound theorem [Brondsted 19831. The
numbers ~ are O(n Fdlzl ) for O < j s
d–1.

As for the facets of a convex polyhe-
dron, the power cells are convex but pos-
sibly unbounded polyhedra. Not every
half-space within a given set needs to
contribute to a facet, so power cells may
be empty or degenerate. d + 1 or more
hyperplanes in R d+ 1 intersectin a com-

mon point (unless parallelism occurs), so
at least d + 1 power cells meet at each
vertex of PD( S). In particular, there are
no vertices if the cardinality n of S does
not exceed d. These and many other
properties of PD(S) can be read off con-
veniently from its (d + 1)-dimensional
embedding,

3. 1.2 Hyperplane Arrangements

In order to exploit the situation fully,
we turn our attention to diagrams of
higher order [Edelsbrunner 1987];

Aurenhammer [1987a]. To this end, the
concept of a power cell is generalized to
more than one site, Let T be a subset of
k sites in S. The power cell of T is
defined as

cell(T) = o h(p, q).
PGT, q=S– T

The complex of all (nonempty) power cells

arising from the
()

~ subsets of S with

fixed cardinality k. is known as the
order-k power diagram of S, k-PD(S).
Clearly 1-PD(S) = PD(S) holds. Note
that k-PD( S) is just the order-k Voronoi
diagram of S provided all sites in S are
equally weighted. ( n – 1)-PD(S) is also
called the furthest site power diagram
of s.

Now let Z denote the intersection of
the half-spaces below the hyperplanes
T(p) for all p e T and above the hyper -
planes x-(q) for all q e S – T. Due to
the foregoing reasoning, Z projects or-
thogonally onto cell(T) in R‘. This
observation draws the connection
between order-k power diagrams and so-
called hyperplane arrangements. The lat -
ter are cell complexes that arise from
dissecting the space by a finite number of
hyperplanes. Each cell in an arrange-
ment is the intersection of some half-
spaces below or above its defining n hy -
perplanes. If we let a k-level consist of all
cells lying below k and above n – k hy -
perplanes, we can conclude that the k-
level induced by {T(p) I p = S} projects to
the cells of k – PD(S) for each k be-
tween 1 and n – 1.This shows that each
arrangement in R‘~ 1 corresponds to a
complete family of higher order power
diagrams in R ~ and vice versa. The cor-
respondence between order-1 power dia-
grams and convex polyhedral surfaces
discussed earlier is a special case of this
situation.

Figure 33 depicts a cell (left) being the
intersection of five upper and three lower
half-spaces, that is, a three-level cell. Its
orthogonal projection onto the xl xz-plane
is an order-3 power cell among eight sites
(right) whose boundary is indicated by
bold lines. Note that the power cell is
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Figure 33. Projecting an arrangement cell [Aurenhammer 1987a].

●

carved into subcells by the furthest site
power diagram of the three emphasized
sites and by the power diagram of the
remaining five sites.

The correspondence to arrangements
straightforwardly yields an upper bound
on the overall size of all higher order
power diagrams of a fixed set of n sites:
the maximal number of faces of an ar-
rangement of n hyperplanes in Rd+ 1.
This number is precisely

,=2:+1( “ )(:)d–~+1

for faces of dimension j, which is in
O(n~+l) for 0 = j < d + 1 [Alexanderson
and Wetzel 1978]. Edelsbrunner et al.
[1986a] developed an algorithm for con-
structing such arrangements in 0( nd+ 1)
time. Consequently, the complete family
of higher order power (or Voronoi) dia-
grams of a given set of sites can be
computed in optimal time and space.
Edelsbrunner [1986] showed how to con-
struct the k-level of an arrangement
in R 3, and thus a single order-k
power (or Voronoi) diagram in the plane,
at a cost of 0(6 log n) per edge.
Recently, Mulmuley [19911 proposed a
randomized algorithm for constructing
levels of order 1 to k in d >4 dimen-
sions in worst-case optimal time.

We state another interesting conse-
quence. Let w’(p) denote the image of
reflection of the hyperplane T(p) through
Rd. The cells in the k-level of { w’( p) I p e
S} correspond bijectively to the cells in
the (n – k)-level of {r(p) I p c S} by re-
versing “upper” and “lower” for their
supporting half-spaces. Clearly, any two
corresponding cells yield the same or-
thogonal projection onto Rd. That is to
say, they yield the same power cell that
is simultaneously of order-k and order-
(n – k) for fixed k. This shows that any
order-k power diagram for n sites can be
interpreted as some order-( n – k) power
diagram. In particular, the furthest site
power diagram of S is the order-1 power
diagram of some set of sites (distinct from
S, in general). We point out that this is
not true for the subclass of classical
Voronoi diagrams, as can be seen from
the maximal size of their closest site and
furthest site counterparts that differ even
in R2; see the Introduction and Section
2.2.1.

Finally, let us mention a result on
power cells in R2. Let T c S and I T I =
k. By definition, cell(T) is the intersec-
tion of k( n – k) half planes and thus
might have that many edges. On the
other hand, cell(T) is the projection of a
polyhedron in R3 that has at most n
facets and thus only 0(n) edges by
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Euler’s relation. It follows that cell(Z’)
has O(n) edges and can be constructed
in 0( n log n) time by intersecting n
half-spaces of R3.

3. 1.3 Convex Hulls

The convex hull of a finite point set is
the intersection of all half-spaces con-
taining this set. Next, we study the dual-
ity of (order-1) power diagrams and
convex hulls [Aurenhammer 1987al.
Duality is usually defined for con-
vex polyhedra. Let Z and Z’ be
two convex polyhedra in R‘+ 1. Z and Z’
are said to be dual if there is a bijective
mapping ~ between the j-dimensional
faces of Z and the (d – j)-dimensional
faces of Z’ such that f G g, for any two
faces f and g of Z if and only if ~(g) ~
4(f). Since power diagrams in Rd are
projections of convex polyhedral surfaces
in Rd+ 1, the notion of duality carries
over in a natural manner.

We now consider, for each site p E S

with weight W(p), a point in Rd+ 1:

( P
A(p) =

)PTP – W(P)

From the formula expressing the hyper-
plane T(p) itcan be seen that A(p) and
T(p) are related via polarity with re-
spect to the paraboloid of revolution. A(p)
is the pole of m(p) and x(p) is the polar
hyperplane of A(p). If T(p) happens to
intersect the paraboloid, then polarity
has the geometric interpretation dis-
played in Figure 34. The hyperplanes
touching the paraboloid at its points of
intersection with 7(p) all concur at A(p).

Recall that the intersection, Z, of the
half-spaces above ~( p), for all p e S, pro-
jects to PD(S). Take an arbitrary
j-dimensional face of Z that lies in the
intersection of, say, T( pi), . . , 7r(pn),
m 2 d —~“ + 1. That is, there exists some
point on these but below all other hyper -
planes defined by S. Since polarity pre-
serves the relative position between
points and hyperplanes, there is a hyper -
plane with A(pl), . . . . A(p~) on it and
A(q) above it, for all remaining sites

\ /

Figure 34. Polarity between points and lines.

q~s. This, however, means that

‘(PI), . . . , ~(P~) span a (d – j)-
dimensional face of the 10wer part of the
convex hull of the point-set {A(p) I p e S}.
This lower part consists of all boundary
faces of the hull that are visible from the
point on the xd+ ~-axis at – co. In other
words, we have shown the duality of Z,
and thus of PD(S), to that lower convex
hull part.

By the same reasoning, the duality of
the furthest site power diagram of S and
the upper part of the convex hull of
{A(p) I p e S} can be established. This
reveals another interesting link between
closest site and furthest site power dia-
grams and, particularly, classical Voronoi
diagrams. Most important, these dia-
grams become constructible in general
dimensions d via convex-hull algo-
rithms. Running times of 0( n log n) for

d = 2 and of 0(nrdi21 ) for odd d are
achieved, both of which are worst-case
optimal; see Preparata and Hong [19771
and Seidel [1981], respectively. For even
d >4, these diagrams can be computed
at logarithmic time per face [Seidel 1986].

By projecting down the edges of the
lower and upper part of the convex hull
that arises from a Voronoi diagram, one
obtains the closest site and furthest site
Delaunay triangulation, respectively. In
such a triangulation, each edge is orthog-
onal to its dual facet. Conversely, the
existence of some set of sites allowing a
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triangulation whose edges are orthogo-
nal to the facets of a given cell complex
in R ~ is a necessary and sufficient condi-
tion for that cell complex to be a power
diagram or, equivalently, to be the pro-
jection of a convex polyhedral surface
[Aurenhammer 1987b, 1987cI. If the
given cell complex is simple (i.e., exactly
d + 1 cells meet at each vertex), a projec-
tion surface can be reconstructed, if it
exists, in time proportional to the num-
ber of facets of that cell complex. It is
well known that such a surface always
exists except for d = 2. This implies that
any simple complex of n cells in d > 3
dimensions, which might have a large
number of lower dimensional faces, can
be specified by storing only n half-spaces
of Rd~~.

Surprisingly, even higher order power
diagrams are dual to some convex hull in
Rd+ 1 [Aurenhammer 1990a]. For any
subset T of S with k sites let A(T)
denote the point in Rd+ 1 whose ortho-
gonal projection onto Rd and whose
(d + l)S’ coordinate are

~p and ~’[pup- W(P)],
PET

respectively. This definition conforms to
the case k = 1 since A(T) = A(p) when
T = { p]. Using arguments similar as for
k = 1, one may verify that the lower part
of the convex hull of the point-set

Sk={ A(T)l TcS,l Tl=k}

is dual to k-PD(S). As one corollary,
that very lower part has to be dual to the
intersection of some corresponding upper
half-spaces and hence to an order-1 power
diagram. To be more precise, k-PD(S)
coincides with PD( S&), for S& being the
(accordingly weighted) orthogonal projec-
tion of S’h onto R‘. This implies that the
class of power diagrams is closed under
order-k modification— another result that
is not true for the more restrictive class
of classical Voronoi diagrams. From the
algorithmic viewpoint, k-PD(S) becomes
constructible via convex hull algo -

rithms. For example, the planar Voronoi
diagram of order-k can be obtained from
its order-(k – 1) predecessor in
O(kn log n) time by simply computing a
convex hull in R 3. Insertions and dele-
tions of sites in an order-k Voronoi dia-
gram also amount to computing certain
convex hulls; these operations even can
be handled on-line in an efficient manner
[Aurenhammer and Schwarzkopf 19911.

3.1.4 k-Sets

Let Q be a set of n points in Rd+l. A
k-set of Q is a subset of k points of Q
that can be separated from the remain-
ing n – k points by some hyperplane of
Rd+ 1. The discussion in the foregoing
section reveals a correspondence between
k-sets and order-k power diagrams.

By polarity, points in Q can be trans-
formed into hyperplanes; each point q e Q
bijectively corresponds to a weighted site
p in R d such that A(p) = ~ and thus to
the hyperplane T(p) in R +1. Now, let
M be a k-set of Q, and consider a hyper -
plane h that separates M from Q – M.
Without loss of generality, M lies below
h. Equivalently, the pole of h lies below
all polar hyperplanes of the points in M
and above all polar hyperplanes of the
points in Q – M. Hence the intersection
of the corresponding lower and upper
half-spaces of R ‘+ ~ bounded by these
polar hyperplanes is nonempty. This in-
tersection, being a cell in the k-level of a
hyperplane arrangement, projects to a
cell of the order-k power diagram of a set
of weighted sites, { p e Rd I A(p) c Q}.

We have obtained a one-to-one corre-
spondence between k-sets in R d+ 1 and
power cells in R‘. This allows us to ap-
ply known results on the number of k-sets
to the analysis of the size of order-k power
diagrams. Let fd( k, n) denote the maxi-
mum number of k-sets of any set of n
points in Rd. Known asymptotic values
of this function are fz(k, n) = Q( n log k)
and fz(k, n) = 0( n ~) [Edelsbrurmer
and Welzl 1985], f~(k, n) = Q(nk log k)

and fa(k, n) = 0(ns13 log5/3 n)
[Edelsbrunner et al. 1986; Aronov et al.
1990, respectively]. Not surprisingly, a
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better understood quantity is

Chazelle and Preparata [1986] showed
g~(k, n) = O(nk5) and Clarkson [19871
showed g~(k, n) = O(nl+’k2), for an~
e > 0. Note that g~(n – 1,n) = O(n )

according to the maximum number of
cells of a hyperplane arrangement in
Rd. Recently, Clarkson and Schor
[1989] succeeded in proving g~(k, n) =
@(n L~/zJ k FW21 ) as n/k ~ m for fixed

d. Determining exact or at least asymp-
totically tight bounds on ~d(k, n) still
remains an important open problem.

3. 1.5 Related Diagrams

The central role of power diagrams within
the context of Voronoi diagrams becomes
even more apparent by the observations
described below [Aurenhammer and Imai
1988]. Let p, q, and r denote three
weighted sites. For the three chordales
they define, chor( p, q) fl chor( q, r) C

chor( p, r) necessarily holds. It is not dif-
ficult to see that this condition is also
sufficient for three hyperplanes to be the
chordales defined by three sites if we
keep in mind the relationship between
chordales in R d and intersections of hy -

d+ I On the other hand,perplanes in R .
the condition is trivially fulfilled by the
separators for any Voronoi diagram with
polyhedral regions since the regions
would not form a cell complex otherwise.
We thus conclude that any Voronoi dia-
gram whose separators are hyperplanes
is a power diagram. This result applies
to diagrams defined by the general
quadratic-form distance

Q(x, p) = (~-p) %(x-p) - ZO(p),

with M a nonsingular and symmetric
(d x d)-matrix and thus to many partic-
ular distance functions considered in the
literature. Note that Q equals the power
function if M is the identity matrix.

One is tempted to believe that power
diagrams are related solely to objects in

higher dimensions. Below we will show
that a certain rather general type of
Voronoi diagram in Rd - 1 can be embed-
ded into a power dia
end we identify RFy%h~~~~~~~~
sub;pace Xd = O of R‘. Let p be some
point site in R‘ - 1 and consider an arbi-
trary distance function f( x, p) for p. For
some strictly increasing function F on
R, we define the cone of p with respect
to F as

cone~(p)

—— {(:@Rd-’,xd=F(f (x, p))}.

A Voronoi diagram for point sites in
R‘ - 1 under the distance function f is
termed transformable if there exists an
F that forces the affine hull, U( p, q), of
cone~( p) n cone~( q) to be a hyperplane
in R d for any distinct sites p and q.
Transformable diagrams represent pro-
jected sections of power diagrams in R‘.
A point x c Rd-~ satisfies f( x, p) <

f( X, q) if and only if its projection, x’,
onto cone~( p) lies in a fixed (open) half-
space, h(p, q), bounded by Q(P, q). As
a consequence, x belongs to p’s region
exactly if

x’~z= (1 ~(P,~),
qes – { p}

for S being the underlying set of sites in
Rd- 1. But the d-dimensional polyhedron
Z is a power cell since a(p, q) n cr(q, r)
c a( p, r) holds so that these affine hulls
can be interpreted as chordales. In con-
clusion, the boundary of p’s region is the
orthogonal projection onto Rd-1 of

cone~( p) intersected with a power cell in
Rd.

Transformable Voronoi diagrams occur
for the additively weighted distance,

a(x, p) =~(x, p) – w(p)

with F(a) = a,

and the multiplicatively weighted dis-
tance,

6(X, p)
m(x, p) = with F(m) = 2 m2.

w(p)
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Figure 35. Cones for two distance functions.

The former gives rise to hyperbolically
bounded and star-shaped regions (the
Johnson-Mehl model, Figure 6), whereas
the latter induces spherically bounded
regions (the Apollonius model, Fig-
ure 12). Its regions are disconnected, in
general, which already reflects the major
complexity of the latter type.

Figure 35 displays cones for the addi-
tively weighted distance (above) and the
multiplicatively weighted distance (be-
low). They are cones of revolution in the
former case—intersecting in a hyper-
bola that projects down to a hyperbolic

separator— and paraboloids of revolution
in the latter case— intersecting in an el-
lipsis that projects down to a circular
separator. In both cases, the affine hull
of cone intersections is a plane.

Upper bounds on the size of both types
of diagram in d dimensions can be de-
rived from the maximum size of a power
diagram in R ~+ 1. Concerning the algo-
rithmic aspects of this relationship, the
only known algorithms for constructing
these diagrams in d > 3 dimensions are
obtained. The Apollonius model in the
plane can be computed in 0( n2) time and
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space, which is worst-case optimal. We
mention that the notion of embeddability
generalizes nicely to order k.

3.1.6 Upper Envelopes

Let fl, ..., f, be piecewise linear d-
variate functions on Rd. In the follow-
ing, we will not distinguish between a
function on Rd and its graph in Rd+ 1.
Consider the pointwise maximum, U, of
these functions:

u(x) = mm, f,(x).

U is called the upper envelope Of

f,,... > L. We have already observed that
certain upper envelopes are related to
power diagrams. For any set S of
weighted sites in R‘, the upper envelope
of the hyperplanes T(p), p ~ S, projects
to PD(S). Below we briefly consider two
types of Voronoi diagrams where this re-
lationship generalizes particularly well.

Let S be a set of n point sites in the
plane, and consider a partition of S into
subsets Cl, . . . . C~ called clusters. The
Hausdorff distance of a point x to the
cluster C, is defined as

h is also called the complete linkage dis-
tance; compare Section 2.5.1. Each clus-
ter C, may be associated with a convex
polyhedral surface cap(C,) in R3, being
the boundary of the polyhedron that
comes from intersecting the half-spaces
below T(p) for all p e C,. Easy argu-
ments show the following. For any point
x in the plane, h(x, C,) < h( x, C~) if and
only if the vertical line through x inter-
sects cap(Ci) in a point lying above
cap(C7). This implies that the upper en-
velope of cap(C,), . . ., cap(CJ projects to
the Voronoi diagram induced by
cl, . . ., Ct and h. For an illustration of
the Voronoi diagram for two-site clusters
see Figure 30.13

To obtain another example, assume
that visibility of the sites is constrained

13 Observe that the upper envelope of cap(T), for all
subsets 2’ of k sites of S, consists of faces of the
k-level of {T(p) I p c S} and thus projects to the
order-k Voronoi diagram of S.

to a window, W, a segment on a line
avoiding the convex hull of S. A site
p G S and a point x are called visible if
the line segment joining x and p inter-
sects W. The peeper’s Voronoi diagram
of S and W assigns each point in the
plane to the region of the closest site
visible from it. See Figure 36 where the
window is shown between two bold line
segments. The diagram is composed of
perpendicular bisectors of sites (dashed)
and of rays through sites and window
endpoints (solid).

Each site p may be associated with an
unbounded convex polygon plate(p) in
R3, being the projection onto T(p) of the
set of all points visible from p. Again it
is easy to see that a point x falls into the
region of a site p just if the vertical line
through x intersects plate(p) in a point
that lies above plate(q) for all q e S –
{ p}. We conclude that the upper enve-
lope of plate( p), p e S, projects to the
peeper’s Voronoi diagram of S.

Upper envelopes of piecewise linear
functions on R2 are well-studied geomet -
ric objects. Path and Sharir [1989] showed
that they can attain a size of @(n2a(n)),
where n is the total number of triangles
needed in partitioning the linear pieces
of these functions and where a denotes
the inverse of Ackermann’s function.
Construction algorithms exist that run
in time proportional to their worst-case
size; see Edelsbrunner et al. [19891 who
also give a lower bound of fl( n2 ) on the
size of a cluster Voronoi diagram, Re-
cent results on upper envelopes by
Huttenlocher et al. [1991] imply that the
diagram for t clusters with a total of n
sites has a size of O(tna( tn)). The upper
envelope arising from the peeper’s
Voronoi diagram has a worst case size of
0( n2 ) [Aurenhammer and Stockl 1988].
Note that the superlinear size of a
diagram implies the existence of
disconnected regions.

3.2 Topology of Planar Diagrams:

Divide-and-Conquer Construction and Its

Variants

By far not all types of Voronoi diagrams
considered in the literature can be
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Figure 36. Peeper’s Voronoi diagram.

brought into connection with geometric
objects having nice algorithmic proper-
ties, like convex hulls or hyperplane ar-
rangements. So there is need for finding
features common to such “ungeometric”
diagrams. We do this by extracting topo-
logical properties, being guided by their
relevance to the divide-and-conquer con-
struction of Voronoi diagrams. Attention
is restricted to the plane as the instance
of most applications and easiest analysis.

The concept of diagram we are inter-
ested in here may be characterized as
follows. The n sites are points in R2.
The distance function varies by different
shapes of its “circles” that may depend
on local properties of R2. It thus may
vary for the individual sites.

3.2.1 Convex Distance Functions

An important type fitting into the con-
cept above is generated by the convex

distance function or the Minkowski dis-
tance [Chew and Drysdale 1985]. Let C
denote the boundary of some compact and
convex subset of R2 with the origin o in
its interior. The distance with respect to
C of o to some point x e R2 is given by

6(X, o)
dc(x, O) =

fs(x’, o)

for x’ being the point of intersection of C
and the ray from o to x. Clearly dc can
be defined with respect to any site q of a
given set S by translating C so that q
occupies the former position of o, Ob -
serve that dc( x, q) depends on the eu -
clidean distance ti( x, q) as well as on the
direction of the ray from q to x. Convex

distance functions include, among others,
the general LP-metric

~p(~,~)=vlql -x,lp+lqz-xglp,
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with

()91 ()xl

‘= 92
and x = X2 ‘

whose most important instances are for
p = 1 (the Manhattan metric; C is a
square rotated by 450), p = 2 (the eu -
clidean distance; C is a circle), and p = co
(the Maximum metric; C is an axis-
parallel square). Note that dc is a met-
ric only if C is point-symmetric
with respect to q since dc( q, r) might
differ from dc(r, q) otherwise. However,
the triangle inequality

dc(q, r) + d~(r, s) ~ dc(q, s)

can easily be shown to hold even if C is
not point-symmetric.

Let us now investigate the Voronoi di-
agram defined by dc and a set S of n
sites in R2. From the classical type we
adopt the notions of separator sep( q, r) of
q and r, dominance dom( q, r) of q over
r, and region reg( q) of q; compare the
Introduction. Clearly sep( q, r) need not
be a straight line as is the case for
euclidean distance. An even more un-
pleasant phenomenon is that sep( q, r)
fails to be one dimensional in general. To
remedy this shortcoming, the notions
above may be redefined slightly by refer-
ring to the lexicographical order (sym-
bolized by < ) of the sites in S [Klein
and Wood 19881. The dominance of q
over r is redefked as

Dom(q, r)

{

dom(q, r) –sep(q, r), ifq<r——
dom(q, r), otherwise.

The new separator, Sep( q, r), is the in-
tersection of the boundaries of Dom( q, r)
and Dom( r, q), which is obviously one-
dimensional. Figure 37 shows a two-
dimensional separator in the L1-metric
(left) and its redefined version (right).
For a Voronoi diagram in the L1-metric,
see Figure 3. The region of a site q now
can be rewritten as

Reg(q) = ,e~~{,} Dom(q, r).

J*q*
r

Figure 37. Redefining a separator.

That is, each point in R2 belongs to the
region of the lexicographically least
site among its closest sites in S. This
ensures that the interiors of the regions
cover the plane up to a set of Lebesgue
measure zero.

Defined in this way, the Voronoi dia-
gram, VC(S), for a convex distance func-
tion dc has the nice property that its
regions are star shaped; Reg( q) contains
the straight-line segment between q and
x for each x e Reg( q), To prove this by
contradiction, assume the existence of a
point y on this segment with dc( y, q) >
dc(q, r), for r ~ S – { q}. This implies
dc(x, q) = dc(x, y) + dc(y, q) > dc(x,

y) + dc( y, r). By the triangle inequality,
the latter sum is greater than or equal to
dc(x, r) so that dc(x, q) > dc(x, r), that
is, x # Reg( q), follows.

The star shapedness of the regions im-
plies their simple connectedness. Clearly,
regions cannot vanish since q ~ Reg( q)
holds for all q c S. So VC(5’) can be

viewed as a planar graph with exactly n
regions. Since vertex degrees are at least
three, there are 0(n) edges and vertices.
We conclude a linear bound on the size of
Vc(s).

3.2.2 Divide-and-Conquer Construction

Our next aim is to show that Voronoi
diagrams for convex distance functions
can be constructed efficiently by a
diuide-and-conquer algorithm. Divide
and conquer splits the problem at hand
into two smaller subproblems, computes
their solutions recursively (unless they
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are very small and can be solved by
trivial methods), and finally combines the
partial solutions to the global one. The
Vc type of diagram is well suited to at-
tack by this strategy. The underlying set
S of sites is partitioned into two subsets
S’l and S2 of nearly equal cardinal-
ity. VC(SI) and VC(S2) are computed
recursively and are then merged to
Vc(s).

The merge step deserves the main at-
tention since it actually constructs the
diagram. We will discuss this process in
some detail and under the simplifying
but computationally unrestrictive as-
sumption that S1 and S2 are separable
by a vertical line. Since VC(SI) as well as
VC(S.J defines a partition of R2, any
point x ~ R2 falls into the region Regl(q)
of VC(SI) for some site q e S1 and into
the region Reg2(r) of VC(S2) for some
site rs S2. Now observe that x e Reg(q)
of VC(S) if dc(x, q) < CZc(x, r), and x c
Reg(r) of VC(S) otherwise. So we have to
cut off some part from Regl( q) and from
Reg2(r) by means of Sep(q, r) in order to
obtain Reg( q) and Reg( r). Carrying out
this task for all relevant pairs of sites
constitutes the merge process. The union
of the newly integrated pieces of separa-
tors will be called the merge chain,

M(Sl, S2).
The efficiency of an implementation of

the merge process critically depends on
the topological properties of the merge
chain. We first show that M(SI, S2 ) be-
haves well if the euclidean distance 8 is
taken for dc [Shames and Hoey 1975].
As a matter of fact, each horizontal line
intersects M(SI, S2 ) in exactly one point
in this case, that is to say, M(SI, S2) is
(vertically) monotone. M(SI, S2) is a

polygonal line composed of edges of the
classical diagram V(S) that are portions
of perpendicular bisectors of sites in S1
and S2, respectively. Figure 17 gives an
illustration. If there were a horizontal
line intersecting the merge chain in two
or more points, some site q ● SI would be
forced to have a larger xl-coordinate than
a site r~S2. This contradicts the as-
sumption that S’l and S2 are separable
by a vertical line; compare Figure 38.

\
\
\

+

e

\
\ ----

--
“q

e
e

r
I
I
I

Figure 38. Impossible merge chain

The monotonicity of M(SI, S2) implies
its connectedness and unfoundedness.
Hence the merge chain may be con-
structed edge by edge, starting with an
unbounded one. As is mentioned in the
Introduction, unbounded edges separate
sites on the convex hull of S. So it suf-
fices to determine a site in S1 and a site
in S2 that are neighbors on the boundary
of the convex hull of S. This can be
accomplished in 0(n) time by finding a
line tangent to the convex hulls of re-
spective S1 and S2. Each further edge of
M(SI, S2) is found by tracing the bound-
aries of the current regions of V(SI) and
V(S2) in an appropriate direction until
they intersect the actual separator. Easy
counting arguments show that only 0(n)
edges are processed in total: Each edge
traced is either discarded or shortened to
a new edge of V(S). This implies an
overall runtime of 0(n) for the merge
process. By the recurrence relation
l“(n) = 2T(n /2) + O(n) that results
from using divide and conquer, the
time complexity T(n) for computing a
classical Voronoi diagram is 0( n log n).

Let us now come back to the distance
dc for general convex shapes C [Chew
and Drysdale 1985]. As in the euclidean
case, M(SI, S2 ) is composed of those parts
of the boundaries of regions of VC(S)
that separate sites in S1 from sites in S2.
Thus M(SI, S2) is one dimensional. Po-
tentially, this merge chain may consist of
cyclic and acyclic (but then necessarily
unbounded) topological curves in R2.
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Examples show that M(SI, SQ) is in fact
disconnected in general. Its connected
components all, however, are acyclic and
thus unbounded. Let us prove that there
are no cycles by assuming the existence
of some cycle M and deducing a contra-
diction. Without loss of generality, M
encircles a subset T of sites in SI.
Clearly, then M does not encircle any
site in Sz. Furthermore, there exists a
leftmost point x e M with x e Sep(r, s)
for some r, s e Sz. Since the regions of
VC(S) are star shaped, the three open
line segments from x to r, s, and some
q e T, respectively, do not intersect M.
Thus, as r and s lie to the right of q, x
has to lie to the left of q. This, however,
contradicts the convexity of the underly-
ing shape. C encircles x and passes
through q, r, and s since the last three
points are equidistant from x with re-
spect to dc. Figure 39 illustrates this
situation; M and C are shown bold and
dashed, respectively.

In order to construct the acyclic merge
chain M(S1, S2),one needs to detect some
unbounded edge of each of its connected
components. The previously described
procedure of tracing boundaries of re-
gions may then be applied. Unfortu-
nately, the convex-hull method that
works successfully in the euclidean case
fails to be correct for dc. To get an alter-
native method, we observe that each un-
bounded edge has to be contained in the
intersection of two unbounded regions of
VC(SI) and VC(S2), respectively. By a
circular scan through these regions, each
relevant pair Regl( q) and Regz(r) can be
found and intersected with Sep( q, r) in a
total of 0(n) time. If Regl(q) fl Regz(r)
n Sep( q, r) extends to infinity, then this
edge is taken as the starting edge for a
connected component of M(SI, S2).

The linear-time behavior of the merge
process thus can be maintained for gen-
eral convex distance functions dc. Con-
sequently, VC(S) requires O(n log n)
time and 0(n) space for construction. Of
course, the complexity analysis is based
on the assumption that dc is computa-
tionally simple. That is, dc( q, x) can be
calculated in O(1) time for all q e S and

/
/

/

/ 0,

/

I
\x

\

\
\

\
\

,

Figure 39. Cycles do not occur.

x~R2, and, in addition, its separators
can be computed and intersected in 0(1)
time. This may not be the case for
complex shapes C, however.

3.2.3 Nice Metrics

We have seen that divide and conquer is
a powerful approach to the construction
of generalized Voronoi diagrams. It also
applies well to sites more general than
points; see Section 1.3.3. We do not pur-
sue these modifications here, however,
since they do not fit into the present
concept of a diagram. Instead, we at-
tempt to characterize metrics in Rz that
preserve the two main properties of a
Voronoi diagram exploited in the pre-
ceding discussion [Klein 1989; Klein and
Wood 1988]: the connectedness of regions
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that implies an 0(n) size and the ab-
sence of cycles in the merge curve that
allows an 0( n log n) time construction.

Let d be any metric in R2 that in-
duces the euclidean topology. A curve ~
in R2 is termed d-straight if, for any
three consecutive points x, y, z on -y, the
equality

d(x, y) + d(~, Z) = d(X, Z)

holds. Clearly &straight curves are
straight-line segments, for ~ being the
euclidean metric. By arguments similar
to that used for convex distance functions
(namely using the triangle inequality), it
can be verified that any Voronoi region
Reg( p) for d is d-star-shaped: y c Reg( p)
holds for the d-straight curve -y from p
to any x e Reg( p). The d-star-shapedness
of Reg( p) does not necessarily imply its
connectedness since d-straight curves do
not always exist. If, however, for any two
points x, z e R2 there is some y distinct
from x, z with d(x, y) + d(y, z) =
d( x, z), then the existence of -y is guar-
anteed. Hence the Voronoi regions under
those metrics are connected.

Posing an additional restriction on the
metric d makes the Voronoi diagram
even more well behaved: Assume that,
for any point m e R2 and for any positive
number r, the generalized disk

D={xc R21d(x, m) <r}

with center m and radius r under the
metric d is a simply connected set. For
fixed r, the shape of D may vary with
the position of m provided D remains
simply connected. Symmetric convex dis-
tance functions dc (i.e., with point-
symmetric shape C) constitute a special
case of translation-invariant disks. And,
indeed, the proof that merge chains are
acyclic can be extended from convex dis-
tance functions to d.

To underline the usefulness of this con-
cept, let us give some examples for d. Let
K be any point in R2. The Moscow met-
ric with respect to K induces d-straight
curves composed of pieces straight to-
ward K or radially around K of minimal
total euclidean length. Figure 40 depicts

a d-straight curve (dashed) between two
points x and y and a Voronoi diagram
(solid) for eight sites in this metric. For
the geodesic distance among polygonal
obstacles, d-straight curves are the mini-
mum euclidean length connections avoid-
ing any edge of the polygons (compare
Figure 26). Also of interest are composite
metrics where, for instance, distances are
measured in the L1-metric in some por-
tion of R2 and in the L2- (i.e., euclidean)
metric in the complement. Here, d-
straight curves are composed of those in
LI and L2 such that curve length is min-
imized. In all three examples, the respec-
tive disks are simply connected. As a
consequence, the resulting Voronoi dia-
grams-except for the geodesic distance
function that fails to be computationally
simple— can be computed in optimal
0( n log n) time and 0(n) space by divide
and conquer. Thereby, the underlying set
of point sites has to be divided into sub-
sets by curves whose intersections with
any disk for d is either connected or
empty. Consult Klein [1989] for further
details. We pose it as an open question to
find equivalent characterizations for
metrics whose Voronoi diagrams are
constructible by divide and conquer in
optimal time.

3.3 Deformation of the Voronoi Diagram:

Plane-Sweep Technique

The variety of techniques that can be
used for constructing Voronoi diagrams
is possibly as fascinating as the diagrams
themselves. The construction of the
classical planar Voronoi diagram by
means of divide and conquer or via
three-dimensional convex hulls are
well-investigated algorithmic problems.
Although the achieved complexity bounds
are worst-case optimal, researchers con-
tinued considering alternative methods
of construction. Aside from the incre-
mental insertion strategy described in
Sections 1.3.1 and 1.3.2, the plane-sweep
technique to be discussed now stands out
by its conceptual and computational sim-
plicity. It extends nicely to various
generalized types of Voronoi diagrams.
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Figure 40. Voronoi diagram in the Moscow metric [Klein 1989].

3.3.1 Deformation

Let S denote a set of n point sites in R2
and let V(S) be their Voronoi diagram.
As we will see, there are serious reasons
for refraining from a direct construction
of V(S) via the plane-sweep technique.
Therefore, first we introduce a continu-
ous deformation of V(S) [Fortune 19871.
Then, we describe the plane-sweep tech-
nique and its use for computing this
deformation.

To explain the mechanism of deforma-
tion, the euclidean distance function with
respect to the sites is interpreted in the
following way. With each site p G S, a
cone

cone(p)

={(X, Z) GR31X~R2, Z=8(X, p)}

is associated. Cone(p) is an upwardly di-
rected cone in R 3 with vertical axis of
revolution, with apex p, and with an
interior angle of m/2.14 Cones may be
viewed as bivariate functions on R2. We
define the lower envelope of {cone(p) I

14Note that the definition of cone(p) agrees with
that of coneF( p) used for transformable Voronoi
diagrams in Section 3.1.5; F is the identity
function.

p c S} as the pointwise minimum of these
functions or, equivalently, as the surface
composed of that portion of each cone
that lies below all other cones. From the
definition of cone(p) it is evident that
this lower envelope projects vertically
to V(S) onto R2.

For our purposes it is preferable to
project the envelope onto R2 in a differ-
ent way, namely under an angle of T/4
in positive xz-direction. This already
gives the desired deformation V*(S) of
V(S). To be more precise, the deforma-
tion * maps each point x e reg( p), say

()xl (
xl

x=
X2 ‘

into x* =
)x2+a(x, p) “

Let us study what happens in this pro-
cess. Clearly, sites are invariant under *.
Each separator sep( p, q) is deformed into
a hyperbola with bottommost point p if
p is below q and bottommost point q,
otherwise. (This hyperbola degenerates
to a vertical half line if p and q have the
same xz-coordinate.) Consequently, the
deformed region reg*( p) of p is the in-
tersection of hyperbolically bounded half
planes of R2. Reference to the upper en-
velope model shows that * preserves the
topological properties of a Voronoi dia-
gram. For instance, the interiors of the
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Figure 41. Deforming a Voronoi diagram [Fortune
1987].

deformed regions cover R2 up to a set of
Lebesgue measure zero. The algorithmic
advantage of the deformation over the
original is that the bottommost point of
each region is its defining site. Excep-
tions are regions for the bottommost sites
in S that necessarily are unbounded.
Figure 41 shows the Voronoi diagram of
six sites (left) and its deformation (right).

3.3.2 Plane-Sweep Technique

The properties of V*(S) are now ex-
ploited for its construction using the
plane-sweep technique. Generally, this
technique proceeds as follows. A horizon-
tal line L is swept across the object to be
constructed from below by keeping the
invariant that the portion of the object
below L is complete at any point in time.
During the plane sweep, the cross section
of L with this object has to be updated at
certain critical points. We thus have to
handle a one-dimensional dynamic prob-
lem instead of a two-dimensional static
problem.

The applicability of the plane-sweep
technique crucially depends on whether
the “critical points” can be predicted.
This is, for example, not the case if the
Voronoi diagram of S is to be constructed
in its original: A site p e S might lie
above L while its region reg( p) already
extends to below L. And it is important
to know when regions begin to intersect
L in order to integrate them properly
into the cross section. We do not run into
such problems when constructing V*(S),
however, since the bottommost point of a
deformed region is just its defining site.

Voronoi Diagrams “ 395

Initially, when L is below S, the por-
tion of V*(S) below L contains no de-
formed edge. Hence the cross section is
empty. As L moves upward the cross
section has to be updated, either by start-
ing a new region when L hits a site or by
starting a new edge when L hits a vertex
that comes from intersecting two de-
formed separators. The properties of
V*(S) described above will ensure the
correctness of this method. Efficiency is
gained by organizing points of intersec-
tion of L with edges of V*(S) (the cross
section) in a dictionary ordered by xl-
coordinates and by organizing sites and
already detected vertices (the critical
points) in a priority queue ordered by
xz-coordinates. There are at most n +
(2 n - 4) critical points since V(S), and
thus V*(S), has at most 2 n – 4 vertices;
compare the Introduction. Further, there
are at most n – 1 points in the cross
section since L cannot intersect a region
of V*(S) twice. An update causes only a
constant number of operations on both
data structures each of which cost
O(log n) time. In conclusion, V*(S) is
computed in 0( n log n) time and 0(n)
space. It is clear that the original
diagram V(S) can be derived from its
deformation in 0(n) time.

Fortunately, this simple construction
method extends to several generalized
Voronoi diagrams [Fortune 1987]. It nat -
urally applies to the additively weighted
type since the correspondence to lower
envelopes extends provided cone(p) is
translated downward by the weight W(p)
for each site p. The intersection of
cone(p) with R2 is then a circle with
center p and radius w ( p), and indeed
this type may be interpreted as the
Voronoi diagram for circles under the
euclidean distance function (Johnson-
Mehl model, Figures 6 and 35). The time
bound of 0( n log n) and the space bound
of 0(n) clearly remains unaffected.

An important type suited for a plane-
sweep attack is the Voronoi diagram for
noncrossing straight-line segments in R2.
The distance of a point x from a segment
s is measured by min{~(x, y) I y e S}. The
region of a segment can be deformed so
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as to have the lower endpoint of that
segment as its bottommost point. Al-
though details are more complicated, a
reasonably simple 0( n log n) time and
0(n) space algorithm is obtained. In par-
ticular, the medial axis of a simple poly-
gon is constructible via plane-sweep: The
edges of the polygon are taken as line
segment sites, and the parts of the dia-
gram outside of the polygon are ignored.
Note that the separator of two segments
consists of portions of straight lines and
parabolas; compare Figure 25.

3.3.3 Constrained Voronoi Diagrams

A further type of Voronoi diagram, and
one to which the plane-sweep technique
applies particularly nicely, is the classi-
cal diagram constrained by a set of line
segments [Seidel 1988]. Let S denote a
set of n point sites in R2 and let T be a
set of m noncrossing line segments with
their endpoints in S. Note that m = O(n)
since the segments form a planar graph.
We view the segments in T as obstacles
and define the bounded distance between
two points x, y ~ R2 as

b(x, y)

{

a(x, y), if~fl T.Ql,——
co, otherwise.

The b-regions

reg~(~)

={xe R21b(x, p)= b(x, q), qeS}

for all sites p ● S define the bounded
Voronoi diagram, V~(S, T), of S and T.
b-regions of endpoint sites are generally
nonconvex (near the corresponding ob-
stacle), whereas b-regions of nonendpoint
sites have to be convex. Both types of
b-regions, and necessarily the former
type, might have portions of obstacles
rather than of perpendicular bisectors as
edges. Clearly, V~(S, T) is a polygonal
cell complex in R2.

The bounded Voronoi diagram is now
modified to the constrained Voronoi
diagram, VC(S, T), of S and T by modi-
fying, for each obstacle t ~ T, the b-

regions it supports. Let t support
‘egb(pl), . . . . reg~(p~) frOm the left and
reg~(ql), ..., reg ~(ql) from the right. The
former b-regions are extended to the left
of t as if only sites pl, . . ., ph were pres-
ent, and the latter b-regions are ex -
tended to the right of t as if only sites
ql,..> ql were present, Note that p, = qj
has to occur twice, namely, for the end-
points r and s of t. So reg~(r) and reg~(s)
are extended to both sides of t.The c-re-

gion, reg.(p), of a site p e S is defined as
the union of reg ~(p) and its extensions
with respect to all obstacles. c-regions
clearly may overlap, so they fail to define
a cell complex and the graph defined by
their edges is nonplanar. See Figure 42
illustrating the bounded Voronoi dia-
gram (solid) and the constrained Voronoi
diagram (solid or dashed or dotted) for 11
sites and 2 obstacles (bold).

The significance of VC(S, T) is due
to its dual structure, the constrained
Delaunay triangulation of S and T.
Intuitively, this triangulation is as simi-
lar as possible to the classical Delaunay
triangulation but integrates the obsta-
cles in T, a structure with several practi -
cal applications. Formally, it consists of
the obstacle segments in T and, in addi-
tion, of all edges between sites p, q e S
that have b( p, q) < m and that lie on a
circle enclosing only sites r ~ S with at
least one of b(r, p), b(r, q) = m. The in-
terested reader may verify that two sites
are connected in this triangulation if and
only if their perpendicular bisector con-
tributes an edge to the constrained
Voronoi diagram. Note that the bisector
of the endpoint sites of an obstacle may
contribute two edges (on either side of
the obstacle) rather than only one. Since
S contains n sites, T contains m obsta-
cles, and no triangulation of n points can
have more than 3 n – 6 edges, we
conclude that VC(S, T) realizes at most
3 n + m – 6 edges and thus has a size of
0(n). Figure 27 shows the constrained
Delaunay triangulation that corresponds
to the constrained Voronoi diagram in
Figure 42.

Let us now come to the plane-sweep
construction of VC(S, T). To aid the
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Figure 42. Bounded

gram [Seidel 1988].
and constrained Voronoi dia-

intuition, we think of VC(S, T) as being
embedded into m + 1 parallel planes in
the following way. One plane, call it Ho,
contains the bounded Voronoi diagram
V~(S, T). Each of the m planes, 11~, for
the obstacle t e T contains the diagram,
Vt, induced by the extensions with re-
spect to t for all b-regions supported by
t.Clearly, this embedding comprises the
same information as is inherent in
VC(S, T). The idea now is to sweep HO
and all Ht simultaneously by (essen-
tially one and the same) horizontal line
L in order to construct Vb(S, T) and all
Vt, for tE T, separately. Again these m
+ 1 diagrams are not constructed di-
rectly but via their deformations
V:(S, T) and V~* that come from map-
ping upward, within the respective plane,
each point ~ inside an (extension of a)
b-region reg~( p) by 8(x, p). Since an ex-
tended b-region is just a classical Voronoi
region, its deformation has the defining
site as the bottommost point (unless the
site itself is bottommost for the respec-
tive plane). In analogy to the classical
Voronoi diagram, regions are created as
sites are hit by L, and edges are created
as L hits intersections of deformed bisec-
tors. One must, however, take care that
edges are assigned correctly to their em-
bedding planes. When a deformed edge
in Ho meets a deformed obstacle t*,then
its construction is continued within Ht
and vice versa. The number of critical
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points arising during the construction of
V$(S, T) and all V,* is proportional to
the size of VC(S, T) and thus is 0(n).

Using appropriate data structures sup-
porting the m + 1 plane-sweeps allows
us to implement the operations at each
critical point in O(log n) time so an
0( n log n) time and 0(n) space algo-
rithm for computing VC(S, T) is obtained.
In particular, the constrained Delaunay
triangulation of S and T is computable
within these bounds since it can be ob -
tained in O(n) time from VC(S, T) by
exploiting duality.
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